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2 Diversity / Resolution

Diversity F. Le Chevalier, March 2018

Motivations

+ When designing a new radar system, standard resolution trade-offs
play a major role, providing the basic parameters of the radar, such
as size, update rate, and range.
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3 Objectives

Diversity F. Le Chevalier, March 2018

Designing a surveillance radar

¢ Critical feature : the “illumination time”, a.k.a. “time on target”

o this time duration should be long enough to allow Doppler analysis, and to gain a
sufficient signal to noise ratio (SNR),

o but also sufficiently small to allow a fast update rate, required by the user.
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4 Objectives
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Designing a surveillance radar

¢ Critical feature : the “illumination time”, a.k.a. “time on target”

o this time duration should be long enough to allow Doppler analysis, and to gain a
sufficient signal to noise ratio (SNR),

o but also sufficiently small to allow a fast update rate, required by the user.

¢ This well-known trade-off between update rate and velocity
resolution also involves

o the antenna beamwidth: the wider the beam, the better the velocity resolution, for
a given update rate

o the clutter rejection capability: the wider the beam, the higher the clutter level

¢ and has also direct consequences on the power budget

o the wider the beam, the lower the antenna gain, but also the higher the
integration gain, for a given update rate
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From scene fluctuations to radar architectures

These intricate relations between beamwidths, velocity
resolution, and power budget involve the fluctuation
characteristics of the targets and clutter

+ performances can be improved through an increased averaging of
clutter and target echoes
0 averaging in frequency, or aspect angle, or polarization, etc.

o requires widening of the beam, or longer illumination time, or wider bandwidths

Such improvements arise through modifications of the
clutter and targets distribution functions

+ more complex than mere mean or standard deviation modifications

eserved for all countries

Diversity has direct consequences on radar
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6 Radar transformation

Diversity F. Le Chevalier, March 2018

Evolution of radar architectures

¢ Modularity of antenna systems, waveform generation, etc.
¢ Wider bandwidths becoming affordable

More stringent requirements

¢ Detection, tracking, imaging/classification on-the-fly — simultaneously!
+ Difficult targets: slow (a few m/s), low RCS (-20dBm?), low altitude

¢ Difficult environment: clutter, urban, coastal, high sea states — and
jamming...
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Diversity F. Le Chevalier, March 2018

3G Development of phased array radar architecture

Possible today

Sub-array Digital

Disadvantages

« Still application specific analog
beamforming

» Number of beams limited to subarrays

* GaN PA technology dominates
recurring cost

Maximum decentralization of receivers / exciters and digital beam-forming

Future capability

Reuse
Ubigwirous Lrghter

Low Cost Networked

Mare Functrons

Element Digital

Exciter
Recelver

=

Advantages

« Hardware reuse

« Common hardware capable of rapid
technology uptake

« Increased in-beam dynamic range

« Higher beam agility

« Thin, light and low-cost

[Dr W. Chappell, DARPA, Keynote address,
IEEE International Radar Conference, USA, October 2015]




8 Plan

Detection, Diversity

Wideband non-ambiguous radar
+ Diversity / resolution gains for targets
¢ Diversity gains for clutter
Space-time coding for diversity

¢ Principles
+ Ambiguity functions

¢ Diversity gains

Diversity F. Le Chevalier, March 2018

Discussion : baseline examples
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Detection vs Diversity

Basics
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Detection

Detection as a 2-hypothesis problem

Compare a certain quantity X, function of the received signals and of the expected
situations (e.g. energy of the output of a matched filter), to a threshold depending on
the required probability of detection Pd and probability of false alarm Pfa

hP HO: no target, H1: a target
0.3} |
0.25 X
0o pX/Ho( ) Detection and False alarm,
' after thresholding of the
0.15

quantity X with threshold T
0.1}

1
0.05
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Coherent vs Non-coherent integration

Shape of the probability density functions p(x/Hi) is critical

Using diversity is a means to improve the separation:

+ Averaging quantities reduces the spread of each probability
density function, and brings it closer to a Gaussian (central limit
theorem)

o Successive bursts at different carrier frequencies
o Different aspect angles with different transmitters / receivers

0 Successive scans, with sufficient time separation

¢ Using coherent integration, or more generally matched filtering,
increases the mean value of X under hypothesis H1

eserved for all countries

¢ Both techniques thus improve the separation, in different ways:
our objective here is to clarify these effects, and their
consequences, for typical situations
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Coherent vs Non-coherent integration, fluctuating target

SIN required per sample, Swerling 1 - 2

N=6, coherent

== +N=6, non coherent

== N=10, coherent

== = N=10, non coherent|

Pd=0,8 Pd=0,9 Pd=0,95

SIN required per sample Swerling 3 -4

- N=6, coherent

== «N=6, non coherent

== N=10, coherent

== = N=10, non coherent
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Pd=0,8 Pd=0,9 Pd=0,95

Diversity F. Le Chevalier, March 2018

(; Effect of the number of bursts for fluctuating target detection. The traces
TU Delft show noncoherent versus coherent integration for a Pfa = 10-.




How to integrate on fluctuating targets?

Swerling 1 targets are more difficult to detect than SW 3

¢ Even more true for higher required Pd

For high Pd, « some » non-coherent integration is
preferable

¢ Not to get trapped in a low RCS zone

+ Especially for highly fluctuating targets (SW 1)

¢ Only for low values of Npulses

Diversity F. Le Chevalier, March 2018
eserved for all countries
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How to integrate on fluctuating targets?

Swerling 1 targets are more difficult to detect than SW 3

¢ Even more true for higher required Pd

For high Pd, « some » non-coherent integration is
preferable

¢ Not to get trapped in a low RCS zone
+ Especially for highly fluctuating targets (SW 1)
¢ Only for low values of Npulses

Golcden rule

¢ First improve S/N (coherent integration), then mitigate the low RCS
zones (frequency agility on a few steps, or multistatic diversity)

eserved for all countries

¢ The price to pay is lower Doppler resolution (because of shorter
coherent bursts)
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Coherent / Non-coherent integration

Coherent integration (summation along the burst, or along
the array, before detection)

¢ Requires no target fluctuation
¢ Doppler or spatial summation
— Signal to noise improvement = N, s

— Best against noise

Non-coherent integration (summation after detection)

+ From scan to scan, or from receiver to receiver (multistatic)
+ From pulse to pulse, or burst to burst, with frequency agility
— Poor against noise (the non-linear detection degrades S/N ratio)

— Best against target & clutter fluctuations

P4 IS
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Wideband non-ambiguous
radar

+ Diversity/resolution gains for targets
+ Diversity gains for clutter

Supported’ by STW_— UserssCommittee: Thales NL,
Christiaan"Huygens Laboratorium (CHL), TNO, MetaSensing,
ISAE Toulouse



Ambiguities, Blind speeds

Conventional radars

¢+ Instantaneous relative bandwidth < 1/1000, range resolution > 15 m
¢ Agility bandwidth 1/10 Ixc
+ Ambiguities (High, Medium, Low PRF) V. xD, = T

Blind speeds and velocity ambiguity

¢ Due to the fact that Doppler is measured as a phase shift from pulse to
pulse, modulo 2x

+ Mitigation: sending successive pulse trains of periodic waveforms
(with different periods) = shorter coherent duration for each train

Diversity F. Le Chevalier, March 2018
eserved for all countries
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Wideband coherent radar

Conventional radars

¢+ Instantaneous relative bandwidth < 1/1000, range resolution > 15 m
¢ Agility bandwidth 1/10 Ixc
+ Ambiguities (High, Medium, Low PRF) V. xD, = T

Wideband coherent radars

¢ Instantaneous bandwidth ~ 1/10, range resolution ~10 A
o Non-negligible rangewalk during the pulse train
o Varying Doppler across the bandwidth
o One low PRF burst, unambiguous in range

Chevalier, March 2018
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Condition for non-ambiguity: Bandwidth 5-10%, 50-100 pulses
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Wideband radar

Coherent processing of 1 burst, compensating for migration

Migrating extended target Clutter texture

—

N B OO 0O O

Fast time (range)

5 10 15 20 25 30 O 2 4
Slow time (pulses) T
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Range migrating extended target in spiky clutter
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Diversity gains for wideband radar

Detection: extended target situation

+ Specific integrator-detector

¢ Classification potential

2 kinds of diversity gains

¢ Against target fluctuations, through wideband observation
¢ Against clutter fluctuations, through target migration

+ Obtained without any cost in Doppler resolution (1 burst)

1

Radar parameters: f, = 10 GHz, B = 1 GHz,
0.2 5—015mT-1msM 32.
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Diversity for wideband radar

For wideband radars, coherent integration time needs not
be reduced to obtain diversity gain

¢ summing the bursts in each range cell of a narrowband agile radar
is equivalent to summing the samples of the range profile of a high
range resolution radar

Target detection performance

¢ depends on target extent and velocity (“spread of the signature”)

Detection gain for the target with velocity v, = 15 m/s,

+ which obeys a range-walk of about 3 range cells during the CPI

¢ is about 7 dB in K-distributed clutter with shape parameter v =0.5
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Space-time coding
(MIMO) for diversity
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Space-Time waveforms

Space-time omnidirectional coding on transmit: wide

instantaneous angular coverage

Recovery of transmission directivity by signal processing on

receive
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6 F. Le Chevalier, “Space-Time Transmission and Coding
f for Airborne Radars”, CIE Journal on Radar Science
TUDelft

and Technology, Vol. 6, N 6, Dec 2008
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Space-time signals

Tx/RX
The signal transmitted in a given 1 I EIE £l

direction g, is the sum of all S 8 —< 5 Target
transmitted signals, with appropriate SE:H ST8 =
phase shifts corresponding to this Oy

direction

-Same high BT

-Same saturated amplifiers
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Circulating code

Delay it between adjacent antennas
Target

Digital Generators Array \
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Range-angle diversity, mismatched receiver, loss < 1.5 dB

Range-Angle Cut of Ambiguity Function , 6y = 0° Range-Angle Cut of Ambiguity Function, 6, = 0°

—_
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Standard wide beam on Tx Circulating codes
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Good angular resolution

10 Very good sidelobes everywhere
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Space-time coding for surveillance

¢ The increased degrees of freedom provided by space-time
coding on transmit open the way to adaptive systems where
range and angle resolutions can be traded, depending on the
mission and the actual environment (knowledge aided)

¢ Compared with modern wide beam DBF Systems, space-time
coding provides an improvement in both accuracy and
resolution larger than 2, for 2-dimensional antennas.

eserved for all countries

¢ For application to modern radar systems with multiple bursts,
space-time coding provides an additional diversity, comparable
to — and compatible with — frequency diversity
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Discussion

How to combine diversity effects when using agile
waveforms?

¢ Baseline example, with a typical modern radar using
o digital beamfoming in elevation only,

o chirp waveform with pulse length 100 s, pulse repetition frequency 1 kHz

Any designer would like to benefit from:

+ High Doppler resolution, for visibility of slow and weak targets;

+ High angular resolution, in elevation (for altitude measurement)
and azimut (for tracking);

+ Diversity on the target, for improved detection in noise;

eserved for all countries

+ Diversity on clutter, for improved detection in clutter.
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Requirements analysis

High Doppler resolution

¢ long coherent integration time

o but anyway this coherent integration time is limited by the fluctuations of the
aspect angle of the target, typically to less than 100ms

High angular resolution

¢ narrow beams on transmit and receive

Diversity on target

+ different carrier frequencies, or different aspect angles (multistatic
system), or integration along a high resolution range profile

Diversity on clutter

eserved for all countries

¢ target superposed to different patches of clutter
o either through range migration or range extent of the target

o Or through multi-bursts with different range ambiguities (so that the target folds

P over different clutter patches). ls
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Standard solutions

These requirements tend to eliminate standard solutions

¢ pencil beam with low range resolution

® limited velocity resolution due to a short time on target

¢ standard digital beam forming with no ambiguity in range
® limited angular resolution due to the wide beam,

® limited diversity on clutter

Several baseline solutions can be sketched

¢ combining long time on target, high angular resolution, and
diversity on targets and clutter

Diversity F. Le Chevalier, March 2018
eserved for all countries
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Baseline solutions with diversity

1. Pencil beam, high range resolution,
unambiguous in range (low PRF)

o satisfies all requirements if the available coherent

integration time is sufficient /

o also provides valuable target analysis capabilities, with high | == J
resolution range-Doppler signatures. e

Diversity F. Le Chevalier, March 2018
eserved for all countries
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Baseline solutions with diversity

1. Pencil beam, high range resolution,
unambiguous in range (low PRF)

o satisfies all requirements if the available coherent

integration time is sufficient /

o also provides valuable target analysis capabilities, with high | == J
resolution range-Doppler signatures. e

2. Space-time coding, low range resolution,
ambiguous in range (high/medium PRF)

o also satisfies all requirements

o pure circulating codes could be a preferred solution in
strong clutter, with very low sidelobes everywhere

Diversity F. Le Chevalier, March 2018
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Baseline solutions with diversity

1. Pencil beam, high range resolution,
unambiguous in range (low PRF)

o satisfies all requirements if the available coherent

integration time is sufficient /

o also provides valuable target analysis capabilities, with high | == J
resolution range-Doppler signatures. e

2. Space-time coding, low range resolution,
ambiguous in range (high/medium PRF)

o also satisfies all requirements

o pure circulating codes could be a preferred solution in
strong clutter, with very low sidelobes everywhere

3. Space-time coding, high range resolution,
unambiguous in range (low PRF)

o low sidelobes, high diversity, and valuable target analysis
capabilities, with high resolution range-Doppler signatures.
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Caveat

Baseline descriptions # definitive solutions

¢ Very complex task of defining a multifunction radar

o for instance, multistatic solutions could also make sense, possibly combined with
space-time coding for solving the “rendez-vous” issue

¢ The objective was rather, as outlined in introduction, to highlight
and clarify some specificities of diversity effects which have to be
considered when designing future systems

+ Many other aspects, from complexity and cost to multifunction
requirements, have also to be taken into consideration

o they should also bring out different advantages of high resolution and space-time
coding for surveillance radars.

Diversity has direct consequences on radar
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Thanks!

Any question, or comment ?
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