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Day-2 
 
 
 
 Day-1 

 
 
 
 

•  Wireless communication between vehicles (V2V)  
and roadside infrastructure (V2I) à V2X 
•  Road traffic safety 
•  Road traffic efficiency 

•  C-ITS applications road map (C2C-CC): Day-1 & Day-2  
 

COOPERATIVE – INTELLIGENT  
TRANSPORT SYSTEMS (C-ITS) 
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level 

Where-in-
lane-level 

Cooperative 
Awareness 

Full 
Automation 

High accuracy 
absolute 

localization is 
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operating 
conditions 

Source:  
Daimler 
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•  Expected benefits 
•  Neighbors (hopefully well positioned) à “Virtual anchors” 
•  Diversity, redundancy, geometric ambiguity solving à Better accuracy/

resilience 

•  Methods mostly validated under moderate mobility so far (e.g., WSN)  
à Open/unprecedented challenges in the vehicular context 

COOPERATIVE LOCALIZATION BASICS 

JS 2018 URSI, Meudon | March 29, 2018 
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CONSIDERED TECHNOLOGIES 

V2X messages 

V2X range-
dependent radio 
measurements 

Data fusion 

On-board sensors 

Cooperative 
Awareness 

Messages (CAMs) 

Particle filter (PF) 

RSSI 

RT-TOF 

GNSS position 
IMU heading 
Odometer speed 
Lane constraints 

Neighbors’  
estimated position/speed &  
related uncertainty 

Maturity Technology Delay Range 
Today ITS-G5 / 802.11p ~ 10 ms 300 – 1000 m 

Prospective 4G LTE V2X ~ 50 ms (V2I) 
~ 10 ms (V2V) 

300 – 900 m 

Prospective 5G mmWave V2X 1 ms < 200 m 

Maturity Technology Frequency Metric 
Today ITS-G5 / 802.11p 5.9 GHz RSSI 
Today IR-UWB / 802.15.4a ~ 4 GHz TOA / RT-TOF 

Prospective 4G LTE V2X 2 GHz Under specification 
Prospective 5G mmWave V2X 30 – 100 GHz AOA / AOD / TOA 
Prospective WiFi extension 2.4 GHz Not standardized 

Ego car’s  
refined position/speed &  
related uncertainty  
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CHALLENGES & OPEN RESEARCH QUESTIONS 

6 Mbps 

300 – 800 bytes 

Can sub-meter localization accuracy be already met through low-complexity 
CLoc strategies between connected vehicles with standard technologies? 

I am 
here! 

Where 
are you 
now ! 

now-∆t now 

@ t1 

@ t4 @ t3 

@ t2 @ t5 

Unplanned geometry 

Large amount of vehicles Highly dynamic mobility 

Imperfect/unfavorable 
neighboring positions 

Unscheduled V2X 
communications 

Limited V2X communication 
channel 
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V2V  
CLoc 

 
 

 
Hybrid V2V 

CLoc 
 

 
Hybrid V2V &  
Multisensor 

CLoc 

GRADUAL ASSESSMENT APPROACH 
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•  At each “ego” vehicle… 

NOMINAL COOPERATIVE FRAMEWORK 

Timestamped 
neighboring 

beliefs 

Prediction 
“Synchronization” 

Correction 

Tx Control 
Strategies 

Link Selection 

Correlation 
Mitigation 

Message 
Approximation 

Timestamped “ego” 
GNSS position 

Timestamped 
“ego” belief 

 CAMs 

RSSIs 

+ XX% confidence 
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•  Link selection based on  
     theoretical positioning performance  
     bounds (CRLB) conditioned on  
     a priori sub-constellations 

•  Non-Bayesian CRLB criterion  
•  Radio link quality 
•  Geometry of neighboring vehicles (GDOP) 
•  All involved positions assumed deterministic  

(& perfect) 
 

•  Bayesian CRLB criterion  
•  Radio link quality 
•  Geometry of neighboring vehicles (GDOP) 
•  Uncertainty of neighbors’ estimated positions 

LINKS SELECTION 
NON-BAYESIAN VS. BAYESIAN CRITERIA 

3
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Presumed probability density of 
local position estimates  

(possibly transmitted also in CAMs) 

[Hoang15b] 
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•  Large-scale GNSS error (urban canyon) 
•  Saved complexity at (almost) no accuracy  

degradation (vs. exhaustive cooperation) 

 

LINKS SELECTION  
PERFORMANCE EVALUATION 

•  Small-scale locally degraded GNSS capability  
•  Local accuracy gains with Bayesian-CRLB 

criterion (vs. non-Bayesian) 

JS 2018 URSI, Meudon | March 29, 2018 
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•  Why is correlation a threat ? 
•  Inherent/specific to constrained vehicular mobility under typical refresh rates 
•  Cannot properly filter out error processes (assumed white) 
•  Misses hidden/fruitful location info 
•  Causes filter over-confidence (in inaccurate estimates) 

 
 
 
 

IMPACT OF SPACE-TIME MEASUREMENT  
NOISE CORRELATIONS 

correlated 
processes 

i.i.d./white 
processes 
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•  Signal level mitigation 
•  Empirical cross-measurement correlations   

→ Compensate for info loss 
 
•  Differential measurements 
     → Eliminate the correlated part (back to i.i.d./white assumptions) 

 

 
 

•  Protocol level mitigation  
•  Adaptively decreased cooperative  

fusion rate  
     → Collect uncorrelated measurements  

MITIGATION OF SPACE-TIME CORRELATIONS 

​→yields┴𝑠↓2→1 (𝑘)= ​𝜆↓Sh ​𝑠↓2→1 (𝑘−1)+ ​
𝑠↓2→1↑′ (𝑘) 
 

​𝑟↓auto↑Sh (2→1)=exp(− ​‖∆​𝑿↓2 ‖+‖∆​
𝑿↓1 ‖/​𝑑↓cor↑Sh  ​log ⁠2 ) 

​𝑟↓cross↑Sh (2→1,  3→1)=exp(− ​
‖​𝑿↓3 − ​𝑿↓2 ‖+∆​𝑿↓1 /​𝑑↓cor↑Sh  ​
log ⁠2 ) 

correlated white 

​​RSSI ↓1→𝐸 = ​RSSI↓1→𝐸 (𝑘)− ​𝜆↓Sh ​RSSI↓1→𝐸 (𝑘−1) 

JS 2018 URSI, Meudon | March 29, 2018 

[Hoang16b] 
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•  ECDF of localization errors for different correlation mitigation 
schemes in a highway scenario (steady-state mobility) 

MITIGATION OF SPACE-TIME CORRELATIONS 
PERFORMANCE EVALUATION 

SPACE-TIME MEASUREMENTS CORRELATION (GPS & V2X RSSI) 

i.i.d/white 
processes correlated 

processes 
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•  Location estimation by distributed particle filter (PF) 
•  Posterior by a set of random state samples  
•  Any process nonlinearity and noise distribution  
•  High number of particles, generating heavy communication load due to 

belief messages passing 

 

•  Challenges 
•  Limited CAM size  
•  Limited channel capacity  
•  ETSI Decentralized Congestion Control (DCC)  

•  Reduced CAM rate (e.g., 2 Hz) à Expected accuracy degradation 
 

IMPACT ON V2X COMMUNICATIONS 

Particle 
Filter 

ITS-G5 
6 Mbps Particle 

Filter 300 – 800 Bytes 

~kB 
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•  Parametric message approximation → Reduce the size of particles info 

 
 
 
•  Tx payload/rate control → Standard CAM Tx policy vs. mixed CAM traffic 

 

•  Tx power control for “tiny CAMs” (for RSSI only) 
 

MESSAGE APPROXIMATION & TX CONTROL 

40% load 

8.4% load 

ITS-G5 

Gaussian mixture Resampling 

[Hoang16a] 
JS 2018 URSI, Meudon | March 29, 2018 



| 18 

•  ECDF of localization errors for different message approximation 
and transmission control strategies (1000 particles) 

MESSAGE APPROXIMATION & TX CONTROL 
PERFORMANCE EVALUATION 

8% channel load 

8.4% channel load 

40% channel load 
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•  High dimensional state and high/peaky likelihood à Harmful to PF 

•  Number of particles vs. state space 
•  “Mismatch” between prior and likelihood  

•  Particles depletion  
•  Filter overconfidence 
•  Bias propagation through CLoc 

•  PF-based GNSS+IR-UWB fusion 
•  Neighbors positioned with uncertainties → High dimensional estimation 

space 
•  Good prior not always guaranteed → Wide prior 
•  Accurate ranges (e.g., IR-UWB) → Peaky likelihood 

 
•  Questionable PF efficiency in case of IR-UWB+GNSS fusion ? 

CHALLENGES TO PARTICLE FILTER BASED  
FUSION  

JS 2018 URSI, Meudon | March 29, 2018 
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•  Ex. of overconfidence in  
biased state estimates due to  
particles depletion (large prior  
vs. narrow likelihood) with  
2500 particles 

PF DEPLETION & BIAS PROPAGATION (1) 

4 significant particle  
weights only (/2500)  

JS 2018 URSI, Meudon | March 29, 2018 
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•  Ex. of unrealistically higher (106!) nb of particles (same scenario) 
•  More particles have meaningful weights à No more overconfidence and 

preserved correction power from accurate observations but…  
•  Unaffordable for real-time (high computational complexity) 

More particles  
with meaningful  
weights 

PF DEPLETION & BIAS PROPAGATION (2) 

JS 2018 URSI, Meudon | March 29, 2018 
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•  Bias propagation from “Virtual Anchors” 
Unbiased  
neighbors’  
estimates 

Overconfidence 
in biased  
neighbors’  
estimates 

PF DEPLETION & BIAS PROPAGATION (3) 

JS 2018 URSI, Meudon | March 29, 2018 
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•  Scheduling (heterogeneous GNSS conditions) 
 

•  Adaptive Bayesian dithering (homogenous GNSS conditions) 
•  Adaptive smoothed likelihood in perception model 

•  Based on theoretical bounds e.g., BCRLB (same as for link selection) 
•  Dithering noise gradually added in filter’s perception so as not to outperform the 

BCRLB 

•  Main expected benefits 
•  Reasonable number of particles 
•  Minimized loss of accurate range info 

IMPROVED PF EFFICIENCY FOR HIGH DIM.  
ESTIMATION WITH ACCURATE V2V RANGES 

predicted 
posterior 

prior 

likelihood 

smoothed 
likelihood 

posterior 
overconfidence corrected 

Over-smoothed 
posterior 

Slightly-
smoothed 
posterior 

More particles 
 alive! 

Smoothed 
likelihood 

[Hoang17a] 
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•  Highway environment 
•  3-lane highway 
•  IR-UWB network ~ 10 neighbors 
•  Gauss-Markov traffic 
      ​𝑣↓𝑘 =𝛼​𝑣↓𝑘−1 +(1−𝛼)​𝑣 +√⁠1− ​𝛼↑2  ​𝜖↓𝑘  

•  Main simulation parameters 
 
 
 
 
 
 
 
•  Performance comparisons 

•  PF (GNSS, GNSS+RSSI, GNSS+IR-UWB (part. depletion vs. adapt. dithering)) 
•  EKF (GNSS+IR-UWB) 

IMPROVED PF EFFICIENCY  
SETTINGS  

GNSS errors in 𝑥-/𝑦-axes (1σ) -/𝑦-axes (1σ) -axes (1σ) 1.5 m* 

IR-UWB ranging error (1σ) 0.2 m 

Initial positional errors in 𝑥-/𝑦-axes (1σ) -/𝑦-axes (1σ) -axes (1σ) 1 m 

Initial velocity errors in 𝑥-/𝑦-axes (1σ) -/𝑦-axes (1σ) -axes (1σ) 0.1 m/s 

Number of particles 1000 

large prior 

reasonable nb 

Unbalanced 
noises 

*Satellite-Based Augmentation Systems (SBAS) JS 2018 URSI, Meudon | March 29, 2018 
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•  Over-confidence depending on both 
•  Actual 1-σ (68th percentile) localization errors 
•  Perceived/Estimated 1-σ localization errors by fusion filters 

0.13 
0.32 

0.15 

0.079 

0.33 

0.062 
→ Over-confident PF under 
particles depletion (id. EKF) 

 
IMPROVED PF EFFICIENCY  
PERFORMANCE EVALUATION 
 

JS 2018 URSI, Meudon | March 29, 2018 
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•  Unbalanced vehicular geometry ~ 1-D à Singular cross-track axis 

 

•  Dead reckoning errors accumulation in GNSS-denied scenarios 
     à Error propagation 

 

REMAINING CHALLENGES &  
PATHOLOGICAL CASES 

Good geometry 
→ beneficial cooperation 

Poor geometry 
→ counterproductive 

cooperation 

lane width 
~ 3.5 m 

safety distance 50 – 100  m 

JS 2018 URSI, Meudon | March 29, 2018 
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•  IMU gyroscope ​𝝎↓𝒌  integration 
​𝑥↓𝑘+1 ≈​𝑥↓𝑘 +Δ𝑇​𝑠↓𝑘 ​cos⁠(​𝜃↓𝑘 +0.5Δ𝑇​𝜔↓𝑘 )  
​𝑦↓𝑘+1 ≈​𝑦↓𝑘 +Δ𝑇​𝑠↓𝑘 ​sin ⁠(​𝜃↓𝑘 +0.5Δ𝑇​𝜔↓𝑘 )  �
​𝜃↓𝑘 = ​𝜃↓𝑘 +Δ𝑇​𝜔↓𝑘  

 
•  Camera-based lane detection  

MULTISENSOR FUSION FOR  
IMPROVED CROSS-TRACK LOCALIZATION 

​​𝐿↓𝑖↑right <𝑿↓𝑖↑(particle) < ​
𝐿↓𝑖↑left  

& 

Prediction 
step in PF 

​𝑋↓𝑖↑(particle) ≥ ​𝐿↓𝑖↑left , ​
𝑋↓𝑖↑(particle) ≤ ​𝐿↓𝑖↑right  

​𝐿↓𝑖↑left  

​𝐿↓𝑖↑right  

[Hoang17b] 
JS 2018 URSI, Meudon | March 29, 2018 
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•  Highway environment 
•  2-lane highway, 7 vehicles 
•  Gauss-Markov mobility traffic 
      ​𝑣↓𝑘 =𝛼​𝑣↓𝑘−1 +(1−𝛼)​𝑣 +√⁠1− ​𝛼↑2  ​𝜖↓𝑘  

•  Performance comparisons 
•  2 main configurations: non-CLoc vs. CLoc (V2V IR-UWB) 

IMPROVED CROSS-TRACK ERRORS 
SETTINGS 

GNSS Non-CLoc 

GNSS + IMU + WSS Non-CLoc 

GNSS + lane constraints Non-CLoc 

GNSS + V2V IR-UWB CLoc 

GNSS + V2V IR-UWB + IMU + WSS CLoc 

GNSS + V2V IR-UWB + lane constraints CLoc 

GNSS + V2V IR-UWB + IMU + WSS + lane constraints CLoc 

JS 2018 URSI, Meudon | March 29, 2018 
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•  ECDF of 1-D localization errors along x (left) and y (right) axes 

IMPROVED CROSS-TRACK ERRORS  
PERFORMANCE EVALUATION 

with IMU gyro or 
lane constraints 

without IMU gyro and 
lane constraints Non-CLoc CLoc 

Non-CLoc enhanced 
by IMU/WSS 

Individual information source affects each component of position error differently 

JS 2018 URSI, Meudon | March 29, 2018 
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•  Sub-meter accuracy through CLoc with existing technologies? 
•  (Conditionally) yes ! 

•  Typically, precision improved from 2 m down to 30 cm in 80% in most favorable 
simulated scenarios 

 

 

•  Various challenges inherent to the cooperative vehicular context 
•  Information asynchronism 
•  Space/time measurement correlations 
•  Computational complexity and information selection 
•  Communication constraints (imposed by underlying standards) 
•  Relative geometry 

•  Other open questions ahead (future work) 
•  Context-aware cooperative fusion (large-scale/long-term) 
•  Security and privacy of involved V2X cooperative links 
•  Fusion partitioning and data kind (e.g., wrt. juridical responsibility  

à See autonomous cars accidents) 
•  New location-enabled applications and services (mapping/cartography,  

automotive IoT, crowd sensing…) 

CONCLUSIONS 

JS 2018 URSI, Meudon | March 29, 2018 
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•  Large-scale field trials in Helmond, Netherlands  
•  4 vehicles with varying fleet topology over long-term  

trajectories (multiple trips of several kms each) 
•  RTK GPS à Ground truth 
•  Singe-band GPS 
•  ITS-G5 platform (Cohda MK5) à V2V data (+ RSSI) 
•  IR-UWB tag à V2V RT-ToF 

•  Performance comparison 
•  Non-Cloc à Standalone GPS+IMU) 
•  CLoc à GPS+IMU+ITS-G5+IR-UWB) 

•  Processing of collected data  
currently in progress  

EXPERIMENTAL VALIDATIONS 

JS 2018 URSI, Meudon | March 29, 2018 

http://hights.eu  
(H2020 - 636537) 
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•  Simulation of Urban MObility (SUMO) traffic 
•  Wide-scale urban case calibrated for the city of Bologna 
•  10 vehicles’ trajectories forming a consistent group for 100 s 

•  Key points 
•  Various GNSS classes (SPS, SBAS,  

DGNSS, RTK) and varying operating  
conditions (σx1 to σx5 and even lost) 

•  Erratic mobility (intersections,  
lane changing…) 

•  Performance comparison 
•  Non-CLoc (GNSS+IMU+WSS) 
•  CLoc (GNSS+IR-UWB+IMU+WSS) 
 

VALIDATION BASED ON MOBILITY TRACES 
SETTINGS 

GNSS 
cond. Nominal Slightly  

degraded 
Severely 
degraded lost 

Color 1σGPS 2σGPS 2σGPS 5σGPS 

JS 2018 URSI, Meudon | March 29, 2018 
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•  ECDF of localization errors over all 10 vehicles 
•  Median error of 0.18 m 
•  Sub-meter (0.75 m) worst-case accuracy at 90% 

VALIDATION BASED ON MOBILITY TRACES 
PERFORMANCE EVALUATION 

JS 2018 URSI, Meudon | March 29, 2018 
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HIGHTS’ OVERALL ARCHITECTURE AND PARADIGM 

JS 2018 URSI, Meudon | March 29, 2018 
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TIME RE-ALIGNMENT OF RECEIVED COOPERATIVE DATA 

•  Proposal: Prediction of both ego and neighbours’ positions based on 
specific mobility models (e.g., Gauss-Markov) 

JS 2018 URSI, Meudon | March 29, 2018 
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•  Info available for “ego” vehicle 𝒊 at time ​
𝒕↓𝒊,𝒌  
•  Prior “ego” belief   ​bel (​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘 )) → Mobility 
•  “Ego” position ​𝑿↓𝑖↑GNSS ( ​𝑡↓𝑖,𝑘 ) → GNSS 
•  Neighbors’ beliefs bel(​𝑿↓𝑗 ( ​𝑡↓𝑗,𝑘 )) → ITS-G5 
•  V2V ranges ​𝑟↓𝑗𝑖 ( ​𝑡↓𝑗,𝑘 < ​𝑡↓𝑗𝑖,𝑘 < ​𝑡↓𝑖,𝑘 ) → IR-

UWB 
 

•  Goal 
•  Estimate the “ego” vehicle’s state vector (2D 

position, speed, etc.) ​​𝑿 ↓𝑖 ( ​𝑡↓𝑖,𝑘 ) of posterior 
bel(​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘 ))  from prior ​bel (​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘 )) 
using distributed bootstrap particle filter   

 
•  Why choosing a bootstrap particle filter ? 

•  Particle filter (PF) 
•  Posterior by a set of random state samples 

       →  Non-linear & non-Gaussian processes  
•  Bootstrap 

•  Prediction by mobility 
•  Correction by likelihood 

       →  Simple implementation 

V2V COOPERATIVE FILTERING APPROACH 

​𝑟↓𝑗𝑖  

bel(​𝑿↓𝑗 ) 

​𝑿↓𝑖↑GNSS  

​bel (​𝑿↓𝑖 ) 

G.M. Hoang, ICC’17, Paris, 23/05/2017 

posterior 

sample space 
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•  For vehicle 𝒊   at time ​𝒕↓𝒊,𝒌 , wrt. a set ​𝓐↓𝒊,𝒌  of “virtual anchors” 
•  Inputs:  

•  Local info: “Ego” belief Bel(​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘−1 )) and GNSS positon ​𝑿↓𝑖↑GNSS (​𝑡↓𝑖,𝑘 ) 
•  External info: ∀𝑗∈ ​𝒜↓𝑖,𝑘 , neighboring belief Bel(​𝑿↓𝑗 ( ​𝑡↓𝑗,𝑘 )) and V2V meas. ​

𝑟↓𝑗→𝑖  
•  Mobility-based prediction at both “ego” and neighboring vehicles  

(à compensate for received data asynchronism) 
Bel(​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘 ))=∫↑▒𝑝​​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘 ) ⁠​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘−1 ) Bel(​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘−1 ))𝑑​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘

−1 )  
Bel(​𝑿↓𝑗 ( ​𝑡↓𝑖,𝑘 ))=∫↑▒𝑝​​𝑿↓𝑗 ( ​𝑡↓𝑖,𝑘 ) ⁠​𝑿↓𝑗 ( ​𝑡↓𝑗,𝑘 ) Bel(​𝑿↓𝑗 ( ​𝑡↓𝑗,𝑘 ))𝑑​𝑿↓𝑗 ( ​𝑡↓𝑗,𝑘 )  

•  Likelihood-based particle weights correction �
​𝑤↓𝑖,𝑘 ∝𝑝​​𝑿↓𝑖↑GNSS (​𝑡↓𝑖,𝑘 ), ​…𝑟↓𝑗→𝑖 …⁠Bel(​𝑿↓𝑖 ( ​𝑡↓𝑖,𝑘 )),…Bel(​𝑿↓𝑖 (​𝑡↓𝑖,𝑘 ))….  

•  Output: MMSE estimator ​​𝑿 ↓𝑖 (​𝑡↓𝑖,𝑘 )=MMSE(Bel(​𝑿↓𝑖 (​𝑡↓𝑖,𝑘 )), ​𝑤↓𝑖,𝑘 ) 

PARTICLE FILTER STEPS 
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•  Bayesian CRLB (BCRLB) solution 
 

•  Bayesian Information Matrix 
 
 

LINK SELECTION STRATEGIES 
BAYESIAN CRLB – A CLOSER LOOK 

​𝐁𝐂𝐑𝐋𝐁↓𝐸 = ​(​𝑱↓𝐸↑𝐵 )↑−1  

​𝑱↓𝑖↑𝑃 =− ​𝔼↓​𝑿↓𝑖  [​​𝜕↑2 ​log ⁠𝑝(​𝑿↓𝑖 ) /
𝜕​(​𝑿↓𝑖 )↑2  ] 

​𝑱↓𝑖→𝐸↑𝑀 =− ​𝔼↓​RSSI,𝑿↓𝐸 , ​𝑿↓𝑖  [​​𝜕↑2 ​log ⁠𝑝(​​​RSSI ↓𝑖→𝐸 |
𝑿↓𝐸 , ​𝑿↓𝑖 ) /𝜕​(​𝑿↓𝐸 )↑2  ] 

Gaussian 
approximations 

Estimate using Monte Carlo integration 

3. neighboring uncertainty 
(from CAM info) 

2. relative geometry 

1. Radio link quality 𝑏= ​(​10​𝑛↓𝑝 /​𝜎↓Sh ​log ⁠10  )↑2  

“Ego” prior info Neighbors’ prior info Measurement info 

= ​Var(​𝑿↓𝑖 )↑−1  

= ​𝔼↓​𝑿↓𝑒 , ​𝑿↓𝑖  [𝑏​(​𝑿↓𝐸 − ​𝑿↓𝑖 )​(​𝑿↓𝐸 − ​𝑿↓𝑖 )↑𝑇 /​‖​𝑿↓𝐸 − ​𝑿↓𝑖 ‖↑4  ] 

​𝑱↓𝐸↑𝐵 = ​𝑱↓𝐸↑𝑃 +∑𝑖=1↑𝑁▒​[​(​𝑱↓𝑖↑𝑃 )↑−1 + ​
(​𝑱↓𝑖→𝐸↑𝑀 )↑−1 ]↑−1   

8 

7 

9 


