

COOPERATIVE VEHICULAR LOCALIZATION: RECENT PROGRESSES AND CHALLENGES

G.M. Hoang^{1,2}, <u>B. Denis</u>¹, J. Härri², D. Slock²

¹ CEA-Leti, MINATEC Campus, Grenoble ² EURECOM, Communication Systems Dept., Sophia Antipolis

Observatoire de Paris, Meudon - March 29th 2018

- Context and Motivations
- V2V Cooperative Localization
- Hybrid V2V Cooperative Localization
- Hybrid V2X Multisensor Cooperative Localization
- Conclusions and Perspectives

Context and Motivations

- V2V Cooperative Localization
- Hybrid V2V Cooperative Localization
- Hybrid V2X Multisensor Cooperative Localization
- Conclusions and Perspectives

- Wireless communication between vehicles (V2V) and roadside infrastructure (V2I) → V2X
 - Road traffic safety
 - Road traffic efficiency

C-ITS applications road map (C2C-CC): Day-1 & Day-2

- Expected benefits
 - Neighbors (hopefully well positioned) \rightarrow "Virtual anchors"
 - Diversity, redundancy, geometric ambiguity solving → Better accuracy/ resilience

Methods mostly validated under moderate mobility so far (e.g., WSN)
 → Open/unprecedented challenges in the vehicular context

JS 2018 URSI, Meudon | March 29, 2018 | 5

CONSIDERED TECHNOLOGIES

	Ma	aturity	1	Fechnology	Frequency	Metric
	Today		ITS	G-G5 / 802.11p	5.9 GHz	RSSI
	Today		IR-UWB / 802.15.4a		~ 4 GHz	TOA / RT-TOF
Prospective Prospective		4G LTE V2X 5G mmWave V2X		2 GHz	Under specification	
				30 – 100 GHz	AOA / AOD / TOA	
	Pro	spective	W	'iFi extension	2.4 GHz	Not standardized
		Cooperat Awarene Messages (V2X rang dependent measurem	tive ess CAMs) ge- radio ents	estimated position related uncertainty	Particle filter (PF)	car's ed position/speed & ed uncertainty Cooperative Awareness Messages (CAMs)
gps		On-board se	ensors	GNSS position IMU heading Odometer speed		(()) (())
						JS 2018 URSI, Meudon March 2

Can sub-meter localization accuracy be already met through low-complexity CLoc strategies between connected vehicles with standard technologies?

- Context and Motivations
- V2V Cooperative Localization

- Hybrid V2V Cooperative Localization
- Hybrid V2X Multisensor Cooperative Localization
- Conclusions and Perspectives

LINKS SELECTION NON-BAYESIAN VS. BAYESIAN CRITERIA

- Link selection based on theoretical positioning performance bounds (CRLB) conditioned on a priori sub-constellations
 - Non-Bayesian CRLB criterion [Hoang15a]
 - Radio link quality
 - Geometry of neighboring vehicles (GDOP)
 - All involved positions assumed deterministic (& perfect)
 - Bayesian CRLB criterion [Hoang15b]
 - Radio link quality
 - Geometry of neighboring vehicles (GDOP)
 - Uncertainty of neighbors' estimated positions

Presumed probability density of local position estimates (possibly transmitted also in CAMs)

3

5

6

5

3

- Why is correlation a threat ?
 - Inherent/specific to constrained vehicular mobility under typical refresh rates
 - Cannot properly filter out error processes (assumed white)
 - Misses hidden/fruitful location info
 - Causes filter over-confidence (in inaccurate estimates)

MITIGATION OF SPACE-TIME CORRELATIONS

- Signal level mitigation
 - Empirical cross-measurement correlations \rightarrow Compensate for info loss $\gamma \downarrow cross fSh(2 \rightarrow 1, 3 \rightarrow 1) = exp(-1)$
 - Differential measurements $\|XI3 XI2\| + \Delta XI1 / dI \operatorname{cor} \hat{TSh}$
 - \rightarrow Eliminate the correlated part (g_{2k}) o i.i.d./white assumptions)

50% correlatio

 $d_{\rm cor}$

- Adaptively decreased cooperative fusion rate
 - \rightarrow Collect uncorrelated measurements

 $d_{\rm cor}$

 ECDF of localization errors for different correlation mitigation schemes in a highway scenario (steady-state mobility)

- Location estimation by distributed particle filter (PF)
 - Posterior by a set of random state samples
 - Any process nonlinearity and noise distribution
 - High number of particles, generating heavy communication load due to belief messages passing

Challenges

- Limited CAM size
- Limited channel capacity
- ETSI Decentralized Congestion Control (DCC)
 - Reduced CAM rate (e.g., 2 Hz) \rightarrow Expected accuracy degradation

• Parametric message approximation \rightarrow Reduce the size of particles info

• ECDF of localization errors for different message approximation and transmission control strategies (1000 particles)

- Context and Motivations
- V2V Cooperative Localization
- Hybrid V2V Cooperative Localization

- Hybrid V2X Multisensor Cooperative Localization
- Conclusions and Perspectives

- High dimensional state and high/peaky likelihood → Harmful to PF
 - Number of particles vs. state space
 - "Mismatch" between prior and likelihood
 - Particles depletion
 - Filter overconfidence
 - Bias propagation through CLoc

- PF-based GNSS+IR-UWB fusion
 - Neighbors positioned with uncertainties → High dimensional estimation space
 - Good prior not always guaranteed \rightarrow Wide prior
 - Accurate ranges (e.g., IR-UWB) \rightarrow Peaky likelihood
- Questionable PF efficiency in case of IR-UWB+GNSS fusion ?

PF DEPLETION & BIAS PROPAGATION (1)

Ex. of overconfidence in 20 y-axis [m] biased state estimates due to ▲2 ▲9 ▲5 0 10 particles depletion (large prior -20 vs. narrow likelihood) with **2500 particles** -60 -20 20 40 -100 -80 0 60 80 100 10 x-axis [m] prior position belief (particles) prior mean prior 95% confidence ellipse 4 significant particle 7 0.7 posterior position belief (particles) weights only (/2500) posterior mean 6 0.6 posterior 95% confidence ellipse true position 5 weight value y-axis [m] 4 3 0.3 2 0.2 1 0.1 0 0 57 58 60 61 62 63 64 65 500 1000 1500 56 59 0 2000 2500 sample ID x-axis [m] JS 2018 URSI, Meudon | March 29, 2018 | 21

PF DEPLETION & BIAS PROPAGATION (2)

- Ex. of unrealistically higher (10⁶!) nb of particles (same scenario)
 - More particles have meaningful weights → No more overconfidence and preserved correction power from accurate observations but...
 - Unaffordable for real-time (high computational complexity)

• Bias propagation from "Virtual Anchors"

True vehicle's position

Predicted/perceived positional belief

Trilateration-based positional belief

JS 2018 URSI, Meudon | March 29, 2018 | 23

- Scheduling (heterogeneous GNSS conditions) [Hoang16c]
- Adaptive Bayesian dithering (homogenous GNSS conditions)
 - Adaptive smoothed likelihood in perception model
 - Based on theoretical bounds e.g., BCRLB (same as for link selection)
 - Dithering noise gradually added in filter's perception so as not to outperform the BCRLB

110 km/h

- Highway environment
 - 3-lane highway
 - IR-UWB network ~ 10 neighbors
 - Gauss-Markov traffic $v \downarrow k = \alpha v \downarrow k - 1 + (1 - \alpha)v + \sqrt{1 - \alpha 12} \quad \overleftarrow{\epsilon \downarrow k}$
- Main simulation parameters

GNSS errors in x -/ y -axes (1 σ)	1.5 m*	Unbalanced
IR-UWB ranging error (1 σ)	0.2 m	noises
Initial positional errors in x -/ y -axes (1 σ)	1 m	large prior
Initial velocity errors in x -/ y -axes (1 σ)	0.1 m/s	
Number of particles	1000	reasonable nb

> 60 m

• Performance comparisons

• PF (GNSS, GNSS+RSSI, GNSS+IR-UWB (part. depletion vs. adapt. dithering))

3.5 m

• EKF (GNSS+IR-UWB)

- Over-confidence depending on both
 - Actual 1-σ (68th percentile) localization errors
 - Perceived/Estimated 1-σ localization errors by fusion filters

- Context and Motivations
- V2V Cooperative Localization
- Hybrid V2V Cooperative Localization
- Hybrid V2X Multisensor Cooperative Localization
- Conclusions and Perspectives

• Unbalanced vehicular geometry ~ 1-D → Singular cross-track axis

• Dead reckoning errors accumulation in GNSS-denied scenarios

→ Error propagation

MULTISENSOR FUSION FOR IMPROVED CROSS-TRACK LOCALIZATION

• IMU gyroscope $\omega \downarrow k$ integration

 $x \downarrow k+1 \approx x \downarrow k + \Delta T s \downarrow k \cos(\theta \downarrow k + 0.5 \Delta T \omega \downarrow k)$ **Prediction** $y \downarrow k+1 \approx y \downarrow k + \Delta T s \downarrow k \sin(\theta \downarrow k + 0.5 \Delta T \omega \downarrow k)$ $\theta \downarrow k = \theta \downarrow k + \Delta T \omega \downarrow k$

- Highway environment
 - 2-lane highway, 7 vehicles
 - Gauss-Markov mobility traffic 3.5 m $v \downarrow k = \alpha v \downarrow k - 1 + (1 - \alpha)v + \sqrt{1 - \alpha 12} \epsilon \downarrow k$

- Performance comparisons
 - 2 main configurations: non-CLoc vs. CLoc (V2V IR-UWB)

GNSS	Non-CLoc
GNSS + IMU + WSS	Non-CLoc
GNSS + lane constraints	Non-CLoc
GNSS + V2V IR-UWB	CLoc
GNSS + V2V IR-UWB + IMU + WSS	CLoc
GNSS + V2V IR-UWB + lane constraints	CLoc
GNSS + V2V IR-UWB + IMU + WSS + lane constraints	CLoc

• ECDF of 1-D localization errors along x (left) and y (right) axes

Individual information source affects each component of position error differently

- Context and Motivations
- V2V Cooperative Localization
- Hybrid V2V Cooperative Localization
- Hybrid V2X Multisensor Cooperative Localization
- Conclusions and Perspectives

- Sub-meter accuracy through CLoc with existing technologies?
 - (Conditionally) yes !
 - Typically, precision improved from 2 m down to 30 cm in 80% in most favorable simulated scenarios
 - Various challenges inherent to the cooperative vehicular context
 - Information asynchronism
 - Space/time measurement correlations
 - Computational complexity and information selection
 - Communication constraints (imposed by underlying standards)
 - Relative geometry
 - Other open questions ahead (future work)
 - Context-aware cooperative fusion (large-scale/long-term)
 - Security and privacy of involved V2X cooperative links
 - Fusion partitioning and data kind (e.g., wrt. juridical responsibility → See autonomous cars accidents)
 - New location-enabled applications and services (mapping/cartography, automotive IoT, crowd sensing...)

EXPERIMENTAL VALIDATIONS

- Large-scale field trials in Helmond, Netherlands
 - 4 vehicles with varying fleet topology over long-term trajectories (multiple trips of several kms each)
 - **RTK GPS** \rightarrow Ground truth
 - Singe-band GPS
 - ITS-G5 platform (Cohda MK5) → V2V data (+ RSSI)
 - IR-UWB tag → V2V RT-ToF

- Performance comparison
 - Non-Cloc \rightarrow Standalone GPS+IMU)
 - $CLoc \rightarrow GPS+IMU+ITS-G5+IR-UWB)$
- Processing of collected data currently in progress

JS 2018 URSI, Meudon | March 29, 2018 | 34

RELATED CONTRIBUTIONS

- Journal
 - [Hoan16b] G.M. Hoang, B. Denis, J. Härri, D. Slock, "Breaking the gridlock of spatial correlation in GPS-aided IEEE 802,11p-based cooperative positioning," IEEE Trans. on Vehicular Technology, Connected Vehicles Series, Aug. 2016

• Conferences

- I. Khan, G.M. Hoang, J. Härri, D. Slock, "Rethinking cooperative awareness for future V2X safety-critical applications," Proc. VNC'17, Nov. 2017
- G.M. Hoang, B. Denis, J. Härri, D. Slock, "Robust data fusion for cooperative vehicular localization in tunnels," Proc. IV'17, **June 2017**
- **[Hoang17b]** G.M. Hoang, B. Denis, J. Härri, D. Slock, "Mitigating unbalanced GDoP effects in range-based vehicular cooperative localization," Proc. ICC'17-ANLN, May 2017
- **[Hoan17a]** G.M. Hoang, B. Denis, J. Härri, D. Slock, "Robust and low complexity Bayesian data fusion for hybrid cooperative vehicular localization," Proc. ICC'17, May 2017
- **[Hoan16c]** G.M. Hoang, B. Denis, J. Härri, D. Slock, "Cooperative localization in GNSS-aided VANETs with accurate IR-UWB range measurements," Proc. WPNC'16, Oct. 2016
- [Hoan16a] G.M. Hoang, B. Denis, J. Härri, D. Slock, "On Communication Aspects of Particle-Based Cooperative Localization in GPS-aided VANETs", Proc. CCP-IV'16, June 2016
- **[Hoan15b]** G.M. Hoang, B. Denis, J. Härri, D. Slock, "Select Thy Neighbors: Low Complexity Link Selection for High Precision Cooperative Vehicular," Proc. VNC'15, **Dec. 2015**
- [Hoan15a] G.M. Hoang, B. Denis, J. Härri, D. Slock, "Distributed Links Selection and Data Fusion for Cooperative Positioning in GPS-aided IEEE 802.11p VANETs," Proc. WPNC'15, March 2015

Thank you!

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

VALIDATION BASED ON MOBILITY TRACES SETTINGS

- Simulation of Urban MObility (SUMO) traffic
 - Wide-scale urban case calibrated for the city of Bologna
 - 10 vehicles' trajectories forming a consistent group for 100 s

- Key points
 - Various GNSS classes (SPS, SBAS, DGNSS, RTK) and varying operating conditions (ox1 to ox5 and even lost)
 - Erratic mobility (intersections, lane changing...)
- Performance comparison
 - Non-CLoc (GNSS+IMU+WSS)
 - CLoc (GNSS+IR-UWB+IMU+WSS)

GNSS cond.	Nominal	Slightly degraded		Severely degraded	lost
Color	$1\sigma_{GPS}$	2σ _{GPS}	$2\sigma_{\text{GPS}}$	5σ _{GPS}	

- ECDF of localization errors over all 10 vehicles
 - Median error of 0.18 m
 - Sub-meter (0.75 m) worst-case accuracy at 90%

HIGHTS' OVERALL ARCHITECTURE AND PARADIGM

leti

Leti CERTECT

• Proposal: Prediction of both ego and neighbours' positions based on specific mobility models (e.g., Gauss-Markov)

- For vehicle *i* at time $t \downarrow i, k$, wrt. a set $A \downarrow i, k$ of "virtual anchors"
 - Inputs:
 - Local info: "Ego" belief Bel($X \downarrow i (t \downarrow i, k-1)$) and GNSS positon $X \downarrow i \uparrow GNSS (t \downarrow i, k)$
 - External info: $\forall j \in A \downarrow i, k$, neighboring belief Bel($X \downarrow j (t \downarrow j, k)$) and V2V meas. $r \downarrow j \rightarrow i$
 - Mobility-based prediction at both "ego" and neighboring vehicles
 (→ compensate for received data asynchronism)

 $\operatorname{Bel}(\boldsymbol{X} \downarrow i(t \downarrow i, k)) = \int f = p \boldsymbol{X} \downarrow i(t \downarrow i, k) \boldsymbol{X} \downarrow i(t \downarrow i, k-1) \operatorname{Bel}(\boldsymbol{X} \downarrow i(t \downarrow i, k-1)) d\boldsymbol{X} \downarrow i(t \downarrow i, k-1) -1)$

 $\operatorname{Bel}(\boldsymbol{X} \downarrow j(t \downarrow i, k)) = \int \uparrow m p \boldsymbol{X} \downarrow j(t \downarrow i, k) \boldsymbol{X} \downarrow j(t \downarrow j, k) \operatorname{Bel}(\boldsymbol{X} \downarrow j(t \downarrow j, k)) d\boldsymbol{X} \downarrow j(t \downarrow j, k)$

- Likelihood-based particle weights correction
 w↓i,k ∝pX↓i1GNSS (t↓i,k),...r↓j→i...Bel(X↓i (t↓i,k)),...Bel(X↓i (t↓i,k))....
- Output: MMSE estimator $X \downarrow i (t \downarrow i, k) = MMSE(Bel(X \downarrow i (t \downarrow i, k)), w \downarrow i, k)$

