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Context / Motivation I

Multipath propagation:

Diffraction

Line of Sight

Reflection

Reflection

Receiver

Transmitter
Power

Delay

Specular Components

(Mainly) Diffuse Tail

Localization exploiting multipath propagation:
• Multipath-propagarion-based finger printing
• Multipath-propagation-based simultaneous localization and mapping
(SLAM)
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Context / Motivation II

Generic architecture of a (two-stage) localization algorithm:

Channel
Feature

Extraction
Tracking /

Data Association p̂[t]y(t)

Measurement
Position
Estimate

Position Estimation

Fingerprinting

Relevant issues regarding the channel estimator:
• Detection of artefacts,
• Miss of components
• Superresolution capability
• Physical reality of estimated multipath components
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Signal Model - Time Dispersion

The channel as a linear time-invariant system:

Rx

Tx

x(t)

y(t)

O

p

Frequency domain characterization:
• X(f ): transmitted signal with
bandwidth B

• Y (f ) , Y (f ; p): received signal
• W (f ): White Gaussian noise
• H(f ) , H(f ; p): Channel
(frequency) transfer function

Input-output relationship:
Y (f ) = H(f )X(f ) + W (f )

Traditional assumption:

H(f ) =
L̃∑
˜̀

α̃ ˜̀exp {−j2πf τ̃ ˜̀}

L̃ small: specular channel; L̃ large: dense (diffuse) channel
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Signal Model - Time Dispersion

The channel as a linear time-invariant system:

Rx

Tx

x(t)

y(t)

O

p

Channel sounding (OFDM):
• x(t): transmitted signal
• y(t) , y(t; p): received signal
• w(t): white Gaussian noise
• H(f ) , H(f ; p): channel
(frequency) transfer function

Traditional assumption:

H(f ) =
L̃∑
˜̀

α̃ ˜̀exp {−j2πf τ̃ ˜̀}

L̃ small: specular channel; L̃ large: dense (diffuse) channel
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Discrete-time Model

y = h + w

where
• y ∈ CN : received symbol
• w ∈ CN : channel noise
• We assume an all-one OFDM symbol [1, . . . , 1]T.

and
h , [h1, . . . , hN ]T , [H(n∆f ) : n = 0, . . . ,N − 1]T

with
• ∆f : carrier spacing
• N: number of carrier

Under the traditional assumption:
h = Ψ(θ̃) α̃

Ψ(θ̃) , [ψ(θ̃ ˜̀) : ˜̀ = 1, . . . , L̃]

ψ(θ) , [exp{−j2πn θ} : n = 0, . . . ,N − 1]T

Frequency variable:
θ ∈ [−1/2,+1/2]

θ̃ ˜̀ , ∆f τ̃ ˜̀
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First- and Second-order Characterization

Expectation:
E[h] = E[w ] = E[y ] = 0

Covariance matrices:

Σhh , E[hhH] Channel covariance matrix
Σww = β−1I
Σyy = Σhh + β−1I

Randon vectors are assumed circularly symmetric.

Rank of the channel covariance matrix:
L , rank(Σhh) ≤ N

The rank is system-dependent: it depends on N for fixed ∆f .
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Carathéodory Representation

If Σhh is Toeplitz, it can be decomposed as

Σhh =
L∑
`=1

γ`ψ(θ`)ψ(θ`)H

= Ψ(θ)ΓΨ(θ)H

L = rank(Σhh) ∈ {1, . . . ,N}

γ , [γ` : ` = 1, . . . , L]T ∈ (0,∞)L

θ , [θ` : ` = 1, . . . , L]T ∈ [−1/2,+1/2)L

Γ , diag(γ)

If L < N, the representation is unique.

It follows that

h = Ψ(θ)α α , [α` : ` = 1, . . . , L]T ∈ CL

Under the reasonable assumption that h is wide-sense stationary, Σhh is
Toeplitz.

We assume that L < N, see numerical results.
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Line Spectral Estimation
Generic model:

y = Ψ(θ)α+ w

=
L∑
`=1

α`ψ(θ`) + w

Inference problem:

Estimate L, (α`, θ`); ` = 1, . . . , L, and noise precision β!

The fact that L is unknown makes the problem more difficult ... and
scientifically challenging.

Back to the traditional assumption:
Traditional assumption leads to the same representation of h:

h = Ψ(θ)α = Ψ(θ̃)α̃

While the components in Ψ(θ̃)α̃ are intended to have a physical meaning,
those in Ψ(θ)α do not. The latter are virtual components. They might
coincides with a phisical component, but not always.
A sparse channel estimator exploits the low-rank structure of Σhh. Thus it
estimates the virtual components.
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Signal Model for Inference

We fix the number of components:

y =
M∑

m=1

αmψ(θm) + α M ≥ N > L

= Ψ(θ)α+ α

Ψ(θ) = [ψ(θ1), . . . ,ψ(θM)] Dictionary matrix (frequency dependent)

Rationale:
We use a sparse estimator that will set the estimates of the weight of
surnumerous components to zero.

Our Choice: Sparse Bayesian learning
We use a Bayesian framework.

We use a sparsity inducing hierarchical prior for α, specifically a
Gamma-Gaussian prior.
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Sparse Bayesian Learning with Parametric Dictionary Estimation
Joint probability density function (pdf):

p(y ,α,γ, θ, β) = p(y |α, θ, β)︸ ︷︷ ︸
p(y|α,Ψ(θ),β)

M∏
m=1

p(αm|γm)
M∏

m′=1

p(γm′ )︸ ︷︷ ︸
Hierarchical prior model

p(β)
M∏

m′′=1

p(θm′′ )

Factor graph:

β

α1

αm

αM

θ1

θm′

θM

p(α1|γ1)

p(αM |γM )

p(αm|γm)

p(θ1)

p(θm′)

p(θM )

p(y|α,γ, θ, β)

p(β)

γ1

γm

γM

p(γ1)

p(γM )

p(γm)

Model of Sparse Bayesian Learning Frequency Estimation
(θ fixed and known) (≡ estimation of dictionary parameters)

Hierarchcal prior model
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Probabilistic Model in the Sparse Bayesian Framework
Joint pdf:

p(y ,α,γ, θ, β) = p(y |α, θ, β)
M∏

m=1

p(αm|γm)
M∏

m′=1

p(γm′ )
M∏

m′′=1

p(θm′′ ) p(β)

where
p(y |α, θ, β) = pCN(y ; Ψ(θ)α, β−1I)

i.e. n is a white Gaussian noise vector

p(αm|γm) = pCN(αm; 0, γ−1m ), m = 1, . . . ,M
p(γm) = pG(γ; c, d), m = 1, . . . ,M
p(θm) = pVM(θm;µ, κ), m = 1, . . . ,M
p(β) = pG(β; a, b)

The distribution we will consider subsequently, specifically their pdfs:
• pCN(x; m,V) = 1

πM |V| exp{−(x−m)HV−1(x−m)} complex Gaussian
• pVM(θ;µ, κ) = 1

2πI0(κ) exp{κ cos(θ − µ)}, θ ∈ [−π,+π) von Mises
• pG(x ; u, v) = ba

Γ(a) x−u−1 exp{−v/x}, x > 0 Gamma
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Mean-Field Approximation

Posterior pdf:

p(α,γ, θ, β|y) ∝ p(y |α, θ, β)
∏

m

p(αm|γm)
∏
m′

p(γm′ )
∏
m′′

p(θm′′ ) p(β)

Family of proxy pdfs:
We consider a family Q of pdfs with the “simpler” factorization

q(α,γ, θ, β) = q(α)
∏

m

q(γm)
∏
m′

q(θm′ ) q(β)

We select as an approximation of p(α,γ, θ, β|y) the one element in Q that is
the closest:

q∗(z) = argmin
q(z)∈Q

KL(q(z)‖p(z|y)) z , (α,γ, θ, β).

Computation of q∗(z):
Different iterative approaches exist to compute (approximate) the solution to
the argmin problem (e.g. variational EM).
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Mean-Field Approximation - The Four Estimation Tasks

β

α1

αm

αM

θ1

θm′

θM

q∗(α)
q∗(θ1)

q∗(θm′)

q∗(θM )
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q∗(γ1)

q∗(γm)
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···
···

···
···
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Facts about and Properties of SBL Estimators

• Various hierarchical models for α can be used that promote sparsity:
Gamma-Gaussian, Bernouilli-Gaussian or Bernouilli-Gamma-Gaussian.

• SBL are Type II Bayesian estimators, while conventional methods, such as
basis pursuit denoising (LASSO), atomic norm denoising, can be
interpreted as Type I Bayesian estimator.

• Type II Bayesian estimators promote greater sparsity than Type I Bayesian
estimators.

• SBL can also be interpreted as stochastic maximum-likelihood with model
order estimation.

• SBL inherently integrates the order estimation process. No hypothesis
testing problem needs to be solved, like in classical model order estimation
based on information theoretic criteria.
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Numerical Studies - Rank of Radio Channels
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A: Specular Channel - ITU-R M.2135 UMa NLOS Channel Model
Two generated impulse responses:

3.5. The Rank of the Channel Covariance Matrix
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Fig. 3.2: Power-delay profiles in Scenario A. The local PDPs are obtained by drawing the number
of multipath components, delays and multipath coefficient powers from the channel model.
Two realizations are shown (left and right). The global PDP is obtained by averaging 50, 000
realizations of the local PDP. The global and robust PDPs are the same in both plots.
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Fig. 3.3: Power-delay profiles in Scenario B. The local PDPs are obtained by drawing the number
of multipath components, delays and multipath coefficient powers from the channel model.
Two realizations are shown (left and right). The global PDP is obtained by averaging 50, 000
realizations of the local PDP. The global and robust PDPs are the same in both plots.
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Fig. 3.4: Sorted eigenvalues of the channel covariance matrices in Scenario A (left) and Scenario
B (right). The two realizations of Σlocal are computed from the local PDPs depicted in Figs. 3.2
and 3.3.
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Covariance eigenvalues of the two responses:
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B (right). The two realizations of Σlocal are computed from the local PDPs depicted in Figs. 3.2
and 3.3.
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• Bandwidth: 25.6 MHz
• Sampling period: 25 KHz
• Dimension of y : 1024
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B: Dense Channel - IEEE 802.15.a Outdoor NLOS Channel Model
Two generated impulse responses:

3.5. The Rank of the Channel Covariance Matrix
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Fig. 3.2: Power-delay profiles in Scenario A. The local PDPs are obtained by drawing the number
of multipath components, delays and multipath coefficient powers from the channel model.
Two realizations are shown (left and right). The global PDP is obtained by averaging 50, 000
realizations of the local PDP. The global and robust PDPs are the same in both plots.
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Fig. 3.3: Power-delay profiles in Scenario B. The local PDPs are obtained by drawing the number
of multipath components, delays and multipath coefficient powers from the channel model.
Two realizations are shown (left and right). The global PDP is obtained by averaging 50, 000
realizations of the local PDP. The global and robust PDPs are the same in both plots.
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B (right). The two realizations of Σlocal are computed from the local PDPs depicted in Figs. 3.2
and 3.3.
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Covariance eigenvalues of the two responses:

3.5. The Rank of the Channel Covariance Matrix
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of multipath components, delays and multipath coefficient powers from the channel model.
Two realizations are shown (left and right). The global PDP is obtained by averaging 50, 000
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Fig. 3.4: Sorted eigenvalues of the channel covariance matrices in Scenario A (left) and Scenario
B (right). The two realizations of Σlocal are computed from the local PDPs depicted in Figs. 3.2
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• Bandwidth: 256 MHz
• Sampling period: 250 KHz
• Dimension of y : 1024
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Effective Rank of the Synthetic Channels

Chapter 3. Application to Wireless Channel Estimation
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Fig. 3.5: Empirical CDFs of rank of Σlocal when a threshold is applied to the eigenvalues. The
plot is obtained by estimating the CDF from 1, 000 realizations of the local PDP in each of the
scenarios.

Rank of Σrobust Rank of Σglobal N∆ f TCP

Scenario A 141 139 133
Scenario B 213 147 205

Table 3.1: Rank of the covariance matrices generated from the robust and global PDPs. The
smallest eigenvalues are set to zero such that up to −40 dB of the signal power is removed.

We first note that the rank of Σrobust is very close to N∆ f TCP. This fact
is clear from the following intuition: (N∆ f )

−1 is the width of the delay res-
olution bins associated to the periodogram. The number N∆ f TCP then gives
how many delay resolution bins the robust PDP is spanning over. This is
approximately equal to the channel DoF associated to the robust PDP and
therefore roughly coincides with the rank of Σrobust.

The rank is a measure of the channel DoF. Recall that the parametric chan-
nel estimator effectively is an approach for obtaining a covariance matrix for
use in a LMMSE channel estimator. The rank of this covariance matrix gives
the dimension of a subspace of which the channel vector h is assumed to be
an element. The lower the dimension of this subspace is, the better estima-
tion accuracy can be expected. The parametric channel estimator estimates
Σlocal and we wish to compare this estimator to an LMMSE estimator which
knowns either Σglobal or Σrobust.

To do that we depict in Fig. 3.6 the normalized mean-square error (NMSE)
that is achieved by the LMMSE estimator of h (3.7) when using different co-
variance matrices. The NMSE depicted in Fig. 3.6 is obtained as a Monte
Carlo simulation over channel realizations. In each trial a realization of Σlocal
is obtained from the channel model. In the channel models we use here it
follows that h is a zero-mean complex Gaussian random vector with covari-
ance matrix Σlocal. Let’s say that noisy observations at the pilot subcarriers

34
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Experimental Results
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Description of the Measurement Experiment

Investigated indoor environment:

Equipment:
• Center frequency: 7 GHz
• Agents equipped with a 5x5 (virtual) array; array spacing: 2 cm
• Anchors equipped with a single antenna
• Bandwidth is varied: 100, 200, 500, 1000 MHz

22 / 29



Bandwidth=100MHz, Agent 3, Anchor 3

23 / 29



Bandwidth=200MHz, Agent 3, Anchor 3
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Bandwidth=500MHz, Agent 3, Anchor 3
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Bandwidth=1000MHz, Agent 3, Anchor 3
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Reconstructed and Estimated Mirror Sources
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Conclusion and Outlook

Conclusion:
• The inherent threshold of SBL needs to be increased in order to decrease
the number of artefacts (VALSE is an alternative).

• Superresolution demonstrated in synthetic channels (half the Nyquist
period)

• SBL shows a sensible behaviour in real conditions.
• Caution is needed in the interpretation of estimated components as
physical ones.

• Behaviour is strongly dependent on the selected iterative implementation.
• SBL works for both specular-like and diffuse channels

Outlook:
• Implementation in a localization estimation and tracking system
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