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Résumé / Abstract

In this talk we consider a class of sparse Bayesian algorithms for the estimation of wireless channels in the
context of their application to localization. In a nutshell, these algorithms aim at detecting and estimating
dominant “specular-like multipath components” in the channel response. Specifically, the number of said
components and their parameters, such as their relative delay and complex amplitude, are estimated. This
information can be exploited for localization purpose, e.g. by finger-printing or by reconstructing the
corresponding physical propagation paths between transmitter and receiver, as done in SLAM.

We discuss the key properties of these algorithms, such as their ability to detect components and to resolve them
in the dispersion domain (e.g. with respect to their relative delay). We also shed some light on the correct
interpretation of “components” extracted by such algorithms (and actually by any parametric algorithm). We
discuss the implications of these properties on localization schemes based on multipath reconstruction.
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Context / Motivation |

Multipath propagation
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Lecalization exploiting multipath propagation:

* Multipath-propagarion-based finger printing

* Multipath-propagation-based simultaneous localization and mapping

(SLAM)

Context / Motivation |1

Generic architecture of a (two-stage) localization algorithm

Measurement.
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Relevant issues regarding the channel estimator:
* Detection of artefacts,
* Miss of components
* Superresolution capability
* Physical reality of estimated multipath components
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Signal Maodel - Time Dispersion

The channel as a linear time-invariant system:

Frequency domain characterization:

* X(f): transmitted signal with
bandwidth B

* Y(f) 2 Y(fip): received signal
— * W(f): White Gaussian noise
* H(f) £ H(f; p): Channel
[frequency) transfer function

Input-output relationship

Y(£) = H(NX(F) + W(F)

Traditional assumption:
1
H(f) =S agexp{—jon

i

I small: specular channel; L large: dense (diffuse) channel

Signal Model - Time Dispersion

The channel as a linear time-invariant system:

Channel scunding (OFDM):

* x(t): transmitted signal

* y(t) 2 y(t: p): received signal

* w(t): white Gaussian noise

* H(f) £ H(f: p): channel
[frequency) transfer function

Traditional assumption:
L
H(f) = Z G exp {—j2m 5}
i

L small: specular channel; [ large: dense (diffuse) channel

Discrete-time Maodel

y=h+w

where

* ye CV received symbol

* we C" channel noise

* We assume an all-one OFDM symbel [1,..., 1",
and

b by, )T & [H(AR) cn=0,... N=1]"

with

* Af: carrier spacing
* N: number of earrier

Under the traditional assumption: . o
- requency variable:
h=w .
h=viOa _ e [-1/2,41/2]
W(E) 2 (i) i=1,...

9; 2 AfF;

First- and Second-order Characterization

Expectation
E[h] =E[w] =E[y]=0
Covariance matrices:
Ewm 2 E[bH"]  Channel covariance matrix
Euw =471
Eyy=Em+ 87"
Randon vectors are assumed circularly symmetric.

Rank of the channel covariance matrix:
L2 rank{Ep) < N
The rank is system-dependent: it depends on N for fixed Af.




Carathéodory Representation

If Xy is Toeplitz, it can be decomposed as

L L = rank{Ep) & {1,.... N}
= Z-.vv-'{-‘lr}r:w,)“ v &y f=1,...,4" € (0,20)
=1 B&[0:E=1,...,1" € [-1/2,+1/2)*
= w(g)rwo)" [ £ diag(+)

If L < N, the representation is unique.
It follows that
h = Wid)a adog:t=1,... L ect

Under the reasonable assumption that b is wide-sense stationary, Ep is
Toeplitz.

‘We assume that L < W, see numerical results.

Line Spectral Estimation

Generic model:

¥ = Wo 4w

L
= Zm::;er b ow
=1

Inference problem:

Estimate L, (o, fe);é =1,..., L, and noise precision 3!

The fact that L is unknown makes the problem more difficult ... and
scientifically challenging.

Back to the traditional assumption:

Traditional assumption leads to the same representation of h:
h=wd)a =W(B)a

While the components in W(n“?)(’l are intended to have a physical meaning,
those in W(H#)a do not. The latter are virtual companents. They might
coincides with a phisical compenent, but not always.

A sparse channel estimator exploits the low-rank structure of Epp. Thus it
estimates the virtual components.

Signal Model for Inference

‘We fix the number of components:

M
¥ = Zm.w{v..,) +a MzN>L
m=1

= W@+ ox

W) = [w(é), ..., v(fu)] Dictionary matrix (frequency dependent)

Rationale:
We use a sparse estimator that will set the estimates of the weight of
SUMMUMErcUS COMPonents to zero

Qur Chaice: Sparse Bayesian learning
We use a Bayesian framewark.

We use a sparsity inducing hierarchical prior for o, specifically a
Gamma-Gaussian prior.

Sparse Bayesian Learning with Parametric Dictionary Estimation
Joint probability density function (pdf):

M

ply . v.0.3) = plylo. 0.
b aagteblal

M M
I #ta) 0i8) T ol0w)

Hirarehical gior muodel

oyl Wi@)

Factor graph:

Probabilistic Model in the Sparse Bayesian Framework

Joint pdf:

M M M
ply:a,7.0.5) = plyla. @.5) | | planiz) [ plre) [ @) o(8)
=1 =1 arr=]

where
plylen, @, 3) = pes(y: W(#)e, 57'1)
i.e. nis a white Gaussian noise vector
), m=1,....M
)=pz(yed) m=1....M
plln) = posg(lmipw), m=1,.... M
p(F) = pa(d: 2, b)

The distribution we will consider subsequently, specifically their pdfs

* pox(xm V) = oo exp{—(x - m)"W " (x —m)} complex Gaussian

* pva(®pr) = g eelkcos(0— )}, 0 € [-7.+7) von Mises

* palxuv) = IIE:JX “lexp{—vix}, x>0 Gamma

Mean-Field Approximation

Posterior pdf:

plo, 0. 8ly) x ply|o, 0, 5) H Pl ym) l_[ o) H P8 ) p(5)

Family of proxy pdfs:
We consider a family Q of pdfs with the “simpler” factorization

ala,v.0.5) = qla) H ql1m) H alf ) al5)
- '
We select as an approximation of p{c, v, 8. 3|y) the one element in Q that is
the closest:
72 (n,%.0,8).

q"(z) = arg min KL{qg(z)||p(zly))
alf)eQ

Computation of g*(z):
Different iterative approaches exist to compute (appraximate) the solution to
the arg min problem (e.g. variational EM).

Mean-Field Appreximation - The Four Estimation Tasks

Facts about and Properties of SBL Estimators

* Various hierarchical models for o can be used that promote sparsity:
G a-Gaussian, B illi-G or Bernouilli-G: 3-Gaussian.
* SBL are Type Il Bayesi stimators, while ienal heds, such as

basis pursuit denoising (LASS0), atomic norm dencising, can be
interpreted as Type | Bayesian estimator,

Type |l Bayesian estimators promote greater sparsity than Type | Bayesian
estimators,

SBL can also be interpreted as stochastic maximum:likelihood with model
arder estimation.

SBL inherently integrates the order estimation process. No hypaothesis
testing problem needs to be solved, like in classical model order estimation
based on information theoretic criteria,




Numerical Studies - Rank of Radio Channels

A: Specular Channel - ITU-R M.2135 UMa NLOS Channel Model

Two generated impulse responses:
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Experimental Results

Description of the Measurement Experiment

Investigated indoor environment:

Equipment.

* Center frequency: 7 GHz

* Agents equipped with a 5x5 (virtual) array; array spacing: 2 cm
* Anchors equipped with a single antenna

* Bandwidth is varied: 100, 200, 500, 1000 MHz
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Bandwidth=500MHz, Agent 2, Anchor 3 Bandwidth=1000MHz, Agent 3, Anchor 3
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Reconstructed and Estimated Mirror Sources Conclusion and Qutlock
Conclusion:
s . = el * The inherent threshold of SBL needs to be increased in order to decrease
= ‘ the number of artefacts (VALSE is an alternative).
m »
- * Sup lution d | in synthetic channels (half the Nyquist
- — - period)
= » * SBL shows a sensible behaviour in real conditions.
o J * Caution is needed in the interpretation of estimated components as
La- i * E, ‘ ® physical enes,
* Behaviour is strongly dependent on the selected iterative implementation.
: i * SBL works for both specular-like and diffuse channels
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