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Abstract:
In the past decades, more and more Global Navigation Satellite Systems (GNSS)-based urban transport applications
emerged. Among these applications, the liability critical ones, such as Electronic Toll Collection (ETC) and Pay as
you Drive insurance, have high requirements for positioning accuracy as well as integrity since large errors can lead
to serious consequences. Yet urban environments present great challenges for GNSS positioning due to the existence
of multipath effects and None-Line-of-Sight (NLOS) receptions. This article presents a complete integrity monitoring
scheme for urban transport applications. This scheme is realized in several levels. Firstly, measurement errors are better
characterized by using weighting models with the help of an Urban Multipath Modeling (UMM). Secondly, several Fault
Detection and Exclusion (FDE) methods are applied in order to detect and exclude erroneous measurements. Finally,
Horizontal Protection Levels (HPLs) are computed and the probability of Misleading Information (MI) is analyzed.

Résumé:
Au cours des dernières décennies, de plus en plus d’applications de transport urbain basées sur les systèmes de position-
nement par satellites (GNSS) ont vu le jour. Des applications exigent une fiabilité critique comme le télépéage basé sur
l’utilisation du GNSS, pour lesquelles des erreurs de positionnement peuvent entraîner de graves conséquences. Pourtant,
les environnements urbains présentent de grands défis pour le positionnement GNSS en raison de l’existence des trajets
multiples et de signaux NLOS (None-Line-of-Sight). Cet article présente un système complet de surveillance de l’intégrité
pour les applications de transport urbain. Tout d’abord, les erreurs de mesure sont mieux caractérisées en utilisant des
modèles de pondération tirant parti d’un modèle de multi-trajet urbain (UMM). Deuxièmement, différentes méthodes
de détection et d’exclusion de défauts (FDE) sont appliquées afin de détecter et d’exclure des mesures erronées. Enfin,
les niveaux de protection horizontale (HPL) sont calculés et la probabilité d’événements redoutés (MI) est analysée.

1 Introduction

GNSS integrity is one criteria to evaluate GNSS performance, which was first introduced in the aviation field.
It is defined as a measure of trust which can be placed in the correctness of the information supplied by the
total system [1]. Since the complexity of urban environments, GNSS performance could be severely degraded
if no special measures are taken. At the same time, the algorithms developed for the aerospace domain cannot
be introduced directly to the GNSS land applications. This is because a high data redundancy exists in the
aviation domain and the hypothesis that only one failure occurs at a time is made, which is not the case for
urban users[2]. The main objective of this article is to present a complete integrity monitoring scheme for
GNSS-based urban transport applications. With real data collected in urban environments, on the one hand,
the measurement errors will be better characterized and reduced by different approaches. On the other hand,
different FDE methods will be used in order to detect and exclude the faults. Finally, the HPL is calculated so
as to provide a statistical position error bound.
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The paper is organized as follows: After the introduction, two weighting models will be introduced: the C/N0

(carrier-power-to-noise-density ratio) weighting model [3] and a new Hybrid model[4], which combines the C/N0,
the satellite elevation and an Urban Multipath Model (UMM), which is an improved version of the Urban Trench
Model (UTM) described in [5]. In the next section, five different FDE method will be described briefly, including
the Subset Test (ST) (also named exhaustive search), the Local Test (LT), the Forward-Backward (FB) Test,
the Danish method as well as the Classic Test, [6][7]. Then, several HPLs will be discussed in order to choose
the one which can better fit the urban canyons. The next section will present the real GPS data set as well as
the evaluation of the accuracy performance with the Weighted Least Square (WLS) estimator compared to the
Ordinary Least Square (OLS) estimator. Finally, five FDE algorithms will be applied with each WLS estimator
and HPL will be calculated. The integrity performance will be analyzed from different aspects.

2 Error Characterizations: Signal Weighting

GNSS signals are often influenced by different error sources during the transmission in the propagation channels.
Distributing different weights to each pseudo-range measurement according to the severity of its contamination
is often an economic way to enhance the accuracy of positioning for the commercial GNSS receivers. This ap-
proach can be highly efficient if the propagation errors could be properly characterized. Conventional weighting
models are often determined by signal transmission delay, such as ionospheric, tropospheric delay, etc, far from
considering the real-time local effects, such as the multipath and NLOS reception. In fact, these local effects
are predominant in the total GNSS measurement error budget for urban transport applications, since they can
lead up to several kilometers’ measurement error. In this paper, we will design the weighting matrix according
to the real-time signal reception state.

Generally, the linearized GNSS pseudo-range observation equation can be written as:

δρ = H× δx+ ε (1)

where, δρ is the deviation between the actually measured pseudo-ranges and the predicted noiseless pseudo-
ranges with a specified initial user state;
H denotes the geometry matrix in which describes the satellite-receiver relative position information;
δx represents the offset vector of the user states (x, y, z, δt) with the initial states;
ε denotes the measurement error vector.

The Weighted Least Square (WLS) solution of δx is expressed as:

δx = [HTWH]−1HTW× δρ (2)

here, W represents the measurement weighting matrix.

In fact, the weighting matrix W is a diagonal matrix, whose diagonal elements are the reciprocal of each
variance of measurement as shown in Eq.3. That is to say, measurements with smaller error variances will
contribute to larger weights in the estimation. On the contrary, measurements with larger error variances, such
as NLOS signals, will get smaller weights or even approximately canceled from the measurement set by a nearly
zero weight. Thus, in the following parts, error variance estimation according to different error models will be
implemented in this matrix and the navigation solutions will be estimated with the WLS according to Eq. 2.

W =


1
σ2
1
· · · 0

...
. . .

...
0 · · · 1

σ2
m

 (3)

2.1 C/N0-based Weighting model

The carrier-power-to-noise-density ration, i.e., C/N0 represents the ratio of signal power and noise power per
unit of bandwidth. It can be seen as an indicator of the signal quality. Several weighting models exist in
literature using C/N0 as criteria[3][8][9]. In this paper we will choose the model in [3], which is firstly build up
for geodetic receivers. And the following formula of variance estimation was proposed for all types of receivers:

σ2 = a+ b · 10−0.1×C/N0 (4)

where, a (in m2) and b (in m2Hz) are model parameters.

The two model parameters a and b strongly relate to the receiver characteristics and signal reception environ-
ments. Calibrations are needed according to specific datasets and receivers.

2



2.2 A new Hybrid model: Contribution of the Urban Multipath Modeling (UMM)

Despite its non-complicated implementation, the C/N0 weighting model presents some drawbacks especially in
dense urban canyons. On the one hand, constructive multipath interference leads to an increase in C/N0, while
destructive multipath interference leads to a decrease. Thus all signals with high C/N0 do not possess high
quality but they all contribute to a larger weight in the C/N0 weighting model when calculating a position.
Thus, we propose here a new hybrid model which is inspired by [4]. This model takes into consideration not
only the C/N0, but also the satellite elevation θ and a LOS/NLOS indicator k from the UMM. This model of
measurement error variance can be written as:

σ2 = k × m · 10−0.1×C/N0

sin2(θ)
(5)

where,

k =

{
1 if LOS

10 if NLOS

m is a multiplier for model calibration, which depends on receivers and environments.

The UMM is an improved version of the Urban Trench Model (UTM) described in [5]. Based on 3D map
data, the UTM calculates the mask of satellite visibility and the additional pseudo-range distance due to signal
reflections. An important hypothesis of UTM is that, the length of the streets is infinite, where comes from the
model name "Urban Trench". In fact, this hypothesis is an approximation of the map geometry which fits well
the reality when the vehicle is inside the homogeneous streets which have approximately the same geometric
features as an example of a typical urban trench shown in Fig.1a. However, this assumption is no longer true
especially in the no-homogeneous streets or the intersections as shown in Fig.1b.

(a) Inside a homogeneous street: a typical urban trench (b) At an intersection area

Figure 1 – Example of two kinds of streets

In order to avoid the drawback of the UTM, the UMM is proposed while getting rid of the infinite length street
assumption. The process is first to detect if any facade exists in every satellite azimuth, with a height enough to
occult the corresponding satellite elevation. This initial step will identify LOS/NLOS satellites. Fig.2 shows an
example of this step at a crossroad in the Chaussée de la Madeleine of Nantes: Fig.2a is an illustration with the
information of digital map, where the polygons represent upside view of buildings. The red lines represent the
directions of each received satellite azimuth. Fig.2b is the street view of the same location provided by Google
Earth.

The next step is to examine every facade locally, to detect whether it could make a specular reflection with the
occulted satellite previously identified. In this case, the final step is to check that no other facade may occult
the reflected ray, whether in between the antenna and the impact point, or whether in between the impact point
and the satellite. In case several facades exist with reflected rays, the one with the largest incidence angle is
preferred. Facades are regarded as vertical planes, with the height of the polygon they belong to. Fig.3 shows
an illustration of this step provided respectively by digital map (Fig.3a) and the same location provided by
Google Earth (Fig.3b). The green line represents a NLOS satellite signal which is reflected by a facade (in blue)
and then received by the user.

Finally, the additional distances will be calculated for all the NLOS receptions according to the geometrical
rules of specular reflection. These additional distances will be corrected when applying the hybrid error model.
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(a) (b)

Figure 2 – An illustration of the first step of the UMM

(a) (b)

Figure 3 – An illustration of the second step of the UMM

3 Fault Detection and Exclusion (FDE) Algorithms

Fault Detection and Exclusion (FDE) algorithms are generally based on the consistency check of the difference
between the measured pseudorange ρ and the predicted pseudorange based on the estimated solution x̂, which
is called residuals. The WLS residual vector r can be written as:

r̂ = δρ−Hδx̂ (6)

Two principle statistical hypothesis tests exist in FDE algorithms: the Global Test (GT) and the Local Test
(LT). The GT is generally implemented at the primary stage in order to detect whether faulty measurements
exist. And if a fault exists, the LT is able to further identify the faulty measurement.

3.1 Global Test

In the framework of the residual-based FDE, the test statistic t used in the GT is called Normalized Sum of
Squared Error (NSSE), which can be expressed as:

t = r̂TΣ−1r̂ (7)

where, the matrix Σ denotes Variance Covariance Matrix (VCM) of measurements, which is also the inverse of
the weighting matrix W mentioned previously in Eq.3.
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Under fault-free conditions, the test statistic t follows a central χ2 distribution; under faulty conditions, t follows
a noncentral χ2 distribution [10][11], which is illustrated in Fig.4a. With the pre-defined probability of false
alarm Pfa and the probability of missed detection Pmd, a threshold Th can be deduced and the statistical
hypothesis test can be conducted as follows:

H0 :(fault-free conditions) t ≤ Th
Ha :(faulty conditions) t > Th

(8)

(a) Global Test (b) Local Test

Figure 4 – Global Test and Local Test

If the null hypothesis H0 is rejected and the alternative hypothesis Ha is accepted, an inconsistency of the total
measurement set is detected. Then, the fault identification procedure is needed to isolate and exclude the faulty
measurement. The LT is one of methods to realize the fault identification.

3.2 Local Test

If a fault is detected with GT, that means an outlier exist in one or several measurements. LT can be carried
out so as to identify the outlier. The LT uses the normalized residuals as test statistic, which can be written as
follows:

wi = | r̂i√
(Cr̂)ii

| (9)

where, (Cr̂)ii represents the ith diagonal element of the covariance matrix of the residuals Cr̂. The covariance
matrix of residual is calculated as follows:

Cr̂ = Σ−H(HTΣ−1H)−1HT (10)

If the ith measurement is not an outlier, wi is supposed to follow a standard normal distribution, which is
the local null hypothesis H0,i. Otherwise, wi follows a biased normal distribution, which corresponds to the
local alternative hypothesis Ha,i as shown in Fig.4b. In Fig.4b, th denotes the local threshold, which can be
calculated with the predetermined local significance level Pfa0. As a result, the local test is realize as follows:

H0,i : (ith measurement not an outlier) wi ≤ th
Ha,i : (ith measurement an outlier) wi > th

(11)

This procedure can be repeated several times in a loop until no outlier exists in current measurement set.

3.3 Different FDE Schemes

Different FDE methods exist by combining the GT and LT in different ways. In this paper, we will implement
five FDE techniques which allow eliminating multiple faults. Most of them are explained in detail in our previous
work [6]. So they will be briefly described here. In case of GT failure, the following FDE techniques can be
carried out:
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• Subset Testing (ST): each subset (number of satellite > 4) of the initial measurement set will be used to
calculate an user position solution, among which the ST with the most satellites and the smallest test
statistic which passes the GT will be chosen;

• Sequential Local Test (LT): each measurement will be examined by LT. In each iteration, the measurement
with the biggest local test statistic exceeding the threshold will be eliminated as outlier. The procedure
stops until no outlier exists or lack of redundancy;

• Forward-Backward (FB) Test: the forward loop will be conducted as the sequential LT described previ-
ously. Then in the backward loop, the eliminated satellites in the forward loop will be reintroduced with
all the possible combination until the optimal measurement set is found. The main advantage of the FB
technique is, on the one hand, to avoid the erroneous rejection of a good measurement since a huge mea-
surement error can sometimes distribute and hide in other measurements’ residuals due to special satellite
geometry; on the other hand, the effect of re-introduction of previous excluded satellite can enhance the
satellite geometry which is usually poor in urban canyon.

• Danish method (DAN): an iteratively reweighting procedure on the pre-estimated measurement variance
will be carried out according to the ratio between local test statistic wi and the local threshold th. What
should be highlighted is that there is no exclusion step in this method, which can well keep the initial
satellite geometry. If the algorithm cannot converge after several iteration (here, we fix it as 10), the
solution will be declared as unreliable.

• The classic method: the measurement with largest normalized residual will be excluded in one iteration.
The procedure stops until the GT passes or lack of redundancy.

During all the FDE procedures, if there is not enough redundancy to realize the FDE or the FDE cannot
successfully identify the outliers, the position solution will be declared as unreliable.

4 Horizontal Protection Leval (HPL) Estimation

Protection Level (PL) is is a statistical error bound computed so as to guarantee that the probability of the
absolute position error exceeding the said number is smaller than or equal to the target integrity risk[2][12].
Several methods of HPL computation exist in the literature especially for aviation utility. Generally speaking,
a ’complete’ HPL is composed of two terms: the impact of measurement noise on user position and the impact
of measurement bias on user position. The noise term HPLn is calculated according to the error propagation,
which is defined in [12] as the HPL for Satellite-Based Augmentation System (SBAS):

HPLn = K(Pmd)× dmajor (12)

where, dmajor corresponds to the error uncertainty along the semi-major axis of the error ellipse. K is an
inflation factor in order to meet specified integrity risk, which is usually obtained in the corresponding χ2 table
with 4 degree of freedom for conservative purpose. More details can be found in [12][13].

The noise term of HPL in Eq. 12 is often not big enough to bound the position errors especially in the presence
of bias in one or several measurements. Thus, the bias term of HPL should be added. The bias term HPLb
generally consists of information of satellite geometry and the detectable bias in the domain of test statistic,
which can be expressed as follows:

HPLb(pbias) = max
i

(SLOPEi · σi)× pbias (13)

where,

SLOPEi =

√
(H+

N,i)
2 + (H+

E,i)
2

Sii
(14)

with H+ = (HTWH)−1HTW and S = I−HH+;
σi represents the standard deviation of the ith measurement;
pbias denotes the bias in the domain of test statistic which can take different values according to the degree of
conservative. This will be detailed in the following text.

In fact, SLOPE represents the sensibility of HPE to the bias of ith satellite[13]. That is to say, the satellite
with the largest SLOPE is the most difficult to detect because given the same HPE, it yields the smallest test
statistic. Also, given a test statistic, the satellite with the highest SLOPE produces the largest position error.

Several variations of HPLb exist by taking different values of pbias, such as following cases:
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• pbias =
√
Th [13], where Th represents the threshold of the GT which can be determined according to the

predefined Pfa;

• pbias =
√
δ [14], where δ denotes the non centrality parameter in the non central χ2 distribution described

in Fig.4a;

• pbias =
√
NSSE.

Finally, the complete HPL can be obtained as the sum of the noise term and the bias term:

HPL = K(Pmd)× dmajor + max
i

(SLOPEi · σi)× pbias (15)

The size of HPL is also an important issue for urban transport applications since it will be less effective if the
size of HPL is too big compared to the size of current road where situated the user vehicle. Thus, a compromise
should be made between the efficiency of the HPL (i.e., HPL well bound the HPE) and its size.

In this paper, we will take pbias =
√
NSSE. This is because: firstly, with the same integrity probability

specifications and the same degree of freedom, we always have Th < δ which can be verified from χ2 tables.
Secondly, we can always make the GT pass after FDE so that NSSE ≤ Th. As a result, by choosing pbias =√
NSSE, the HPL size can be well reduced. This is coherent with our results obtained from real data, in which

the other two choices of pbias often produce too big HPLs. Such conservative HPLs don’t fit well with urban
transport applications.

5 Application of the Complete Integrity Monitoring Scheme

5.1 Description of System and Dataset

The complete framework consists of two modules: an accuracy enhancement module and an integrity enhance-
ment module as shown in Fig. 5. In the accuracy enhancement module, measurement errors will be characterized
with error models mentioned in section 2. They will be compared with the results obtained from the Ordinary
Least Square (OLS) estimator, in which, all the measurements have the same weight. Then, in the integrity
enhancement module, five FDE methods mentioned in section 3 will be implemented and evaluated. In this
paper, we fix Pfa = Pmd = 10−2. Finally, the HPL will be calculated according section 4.

Figure 5 – An overview of the complete integrity monitoring scheme

The GPS data used to test the complete system was collected in the city center of Nantes, France. Two kinds
of receivers are used: an Ublox-LEA-6T, which is a typical equipment used in car navigation systems and a
dual-frequency Novatel-DLV3 receiver, which is a high precision receiver used to provide the reference trajectory.
The total trajectory have 17903 epochs which takes about one hour at 5Hz. Fig. 6 shows us an overview of this
trajectory with Google Earth. We can see that the traveled streets are in deep urban canyons with different
heights of buildings.
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Figure 6 – An overview of the trajectory in the city center of Nantes, France

Horizontal Position Error (m)
Mean Median 95% std

OLS 10.14 5.66 30.74 77.39
WLS C/N0 4.81 2.64 13.78 26.79
WLS Hybrid 3.61 2.33 10.83 4.43

Table 1 – WLS Accuracy Comparison (without FDE applied)

5.2 Experimental Validation and Performance Analysis

5.2.1 Performance of accuracy

In this sub-section, only the error models are applied (without FDEs). Fig. 7 shows the reference trajectory (in
green) together with the trajectories estimated respectively by OLS (in blue), by WLS with C/N0 model (in red
of Fig. 7a) and by WLS with hybrid model (in red of Fig. 7b). Then Fig. 8 presents the Cumulative Distribution
Function (CDF) of the HPE. We can see that with the two error models, the accuracy is well improved compared
to the OLS, especially with the hybrid model. Table 1 makes a summary about the HPE in terms of mean,
median (50th percentile), 95th percentile and standard deviation (std), which is used to evaluate the dispersion of
HPE. We can see obviously that the WLS with hybrid model has the best performance concerning the accuracy.
The main advantage of the hybrid model compared to the C/N0 model is the capability of reducing huge errors
since the 95th percentile of HPE passes from 13.78m to 10.83m and the std passes from 26.79m to 4.43m.

(a) (b)

Figure 7 – Comparison of Estimated Trajectories
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Figure 8 – Cumulative Distribution Function (CDF) of the HPE

mean
(HPE)

median
(HPE)

95% HPE std (HPE) median(HPL) Pmi

ST 4.61m 2.45m 14.44m 8.02m 18.26m 0.76%
LT 3.56m 2.38m 9.56m 4.41m 17.76m 0.11%
FB 3.43m 2.32m 9.90m 4.36m 17.46m 0.14%
DAN 4.13m 2.50m 11.18m 6.17m 19.21m 0.28%
Classic 4.55m 2.46m 13.61m 8.07m 18.29m 0.75%

Table 2 – Performance summary of C/N0 model with FDE

5.2.2 Performance of integrity

After the accuracy enhancement, the integrity module is implemented and the HPL is calculated in this section.
The main performance evaluated after application of FDE are mainly accuracy, the size of HPL as well as the
efficiency of HPL. The last one is assessed by the probability of misleading information Pmi, which represents
the probability of HPE exceeding HPL being the system declared the position solution is reliable.

Table 2 gives us a summary about the WLS with C/N0 model with different FDE methods. We can see that
the accuracy performance is again improved especially huge errors are removed since the standard deviations
of HPE are much reduced. Among all the FDE methods, the FB has the best global performance and Fig. 9
presents some details. We can see in Fig.9a the reference trajectory (in green), the trajectory estimated with
C/N0 WLS (in sky blue) as well as the trajectory estimated with WLS C/N0 and FB (the reliable positions are
in magenta and unreliable positions are in black). Especially in the red circles, we can see that the majority of
huge HPEs are either reduced or flagged as unreliable. All the Pmi are smaller than 1%.

Table 3 reports the performance of each FDE method with hybrid model. We can see that, with LT, FB and
DAN, accuracy can be slightly improved compared to the one with only WLS hybrid model. Unfortunately,
with ST and classic method, the accuracy is slightly degraded. Additional measures should be taken in the
following research, such as special control of satellite geometry, in order to avoid this degradation. Compared
to the performances of total integrity scheme with C/N0 model, the sizes of HPL calculated with hybrid model
are smaller. And all the Pmi can be guaranteed smaller than 1%.

As mentioned in Section 3.3, the FDE algorithms are not all the time available. When there is not enough

mean
(HPE)

median
(HPE)

95% HPE std (HPE) median(HPL) Pmi

ST 4.07m 2.39m 12.59m 6.34m 12.50m 0.95%
LT 3.42m 2.29m 10.59m 3.94m 12.36m 0.42%
FB 3.48m 2.28m 10.76m 4.03m 12.50m 0.48%
DAN 3.55m 2.30m 10.81m 4.67m 13.28m 0.21%
Classic 4.01m 2.39m 11.96m 7.16m 12.45m 0.80%

Table 3 – Performance summary of Hybrid model with FDE
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(a) A zoom of Estimated Trajectory (b) CDF of HPE

Figure 9 – Performance of WLS C/N0 with FB

(%) ST LT FB DAN Classic
C/N0 98.58 93.55 95.01 94.81 98.57
Hybrid 98.08 89.53 91.22 96.39 97.98

Table 4 – FDE Availability

redundancy to check the consistency or when the FDE algorithms are not able to identify the outlier, the system
will be declared as non available. These positions will be flagged as unreliable. Table 4 reports the availabilities
of each scheme. Thus, how to enhance the availability is also an issue for future research.

6 Conclusion

In this paper, we propose a complete integrity monitoring scheme for urban transport applications. This
framework consists of two modules: one for accuracy enhancement, inside which, a new error model with
the contribution of map information is proposed; the other for integrity enhancement, inside which, five FDE
methods are implemented.

The validation with real GPS data collected in urban canyons shows that accuracy can be significantly improved
by two error models compared to the classic Ordinary Least Square method especially the new hybrid model.
All the FDE algorithms are able to help improve the accuracy of C/N0 model but for hybrid model, only the
Local Test, Forward-Backward Test and the Danish method can improve accuracy while the Subset Testing
and the Classic method cannot due to satellite geometry degradation. Thus, special measures may be taken in
order to avoid this degradation for future work. The HPL is able to well bound the HPE with Pmi smaller than
1%. HPLs still have a median value above 10 m in size (for HPE of 2 m in median), which is an issue to target
for future research.
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