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Abstract:

A 3D target model expressed in intrinsic coordinates will be developed in this article. The frame used is the Frenet-Serret

frame, that is a practical frame to represent the commands a pilot can have on his aircraft for instance. A quite accurate

description of the possible motions of an aircraft is to assume the commands are piecewise constant. Once the target

model is derived, a �ltering algorithm is needed to perform state estimation. As the target model is not expressed in a

vectorial space, but rather in a Lie group setting, a novel algorithm, based on results from the inertial navigation �eld

has to be established. This new �lter is called the Invariant Extended Kalman Filter (IEKF).

Résumé:

Cet article présente un modèle de cible en 3D et en coordonnées intrinsèques. Le repère de Frenet-Serret est utilisé, il

permet de représenter les commandes qu'un pilote peut avoir sur son appareil par exemple. Une description relativement

réaliste des mouvements possibles d'un avion est de considérer des commandes constantes par morceaux. Une fois le

modèle de cible établi, il faut un algorithme de �ltrage pour faire l'estimation de l'état. Comme le modèle de cible

n'est pas exprimé dans un espace vectoriel, comme c'est le cas habituellement, mais dans un groupe de Lie, il faut

développer un algorithme de �ltrage nouveau pour le pistage radar, qui s'inspire de ce qui existe déjà dans le domaine

de la navigation inertielle, à savoir le �ltre de Kalman étendu invariant.

1 Introduction

One application of radar target tracking is to maintain the tracks initiated within the beam fo the radar. In
order to be sure the target is not lost, an estimation of the state of the target is necessary, and more speci�cally,
a precise position and velocity estimation is needed. For other radar applications, such as target guiding, a
very precise estimation of the velocity vector is essential (among which its direction is of crucial importance).
Filtering algorithms are thus very popular among the radar community to perform state estimation.
To perform target tracking, two elements are essential and complementary. The performances of the estimation
is due to the target model on the one hand, and to the �ltering algorithm on the other hand. First the target
model must be accurate enough to describe the possible motions of di�erent classes of targets. Indeed a radar is
required to track any aircraft, missiles, boats and all possible types of targets. The accuracy required for each
target is set by the client of course, and a single radar cannot track with a high accuracy all types of targets,
but it has to keep track of all of them. The target model must thus be loose enough to take into account all
these di�erent classes of targets. The other element needed is a �ltering algorithm. It is fed with the target
model and proceeds in two steps. The �rst step is merely the propagation of the target model. The second step
occurs after the algorithm receives a measurement from the radar, and it can thus adjust the prediction made
with the measurement received. The �ltering algorithm outputs the state estimation along with its covariance,
giving the con�dence one can have in the estimation.
In industrial applications, most target models are linear ones, among which we �nd the famous Singer model [1]
or constant velocity models. For the �ltering algorithms, the linear Kalman �lter [2], or the Interacting Multiple
Model (IMM) [3] that runs several �lters in parallel are very popular. For nonlinear target or measurement
models, the Extended Kalman Filter (EKF) [4] is the most well-known, although it is not very robust. A
robusti�ed solution is to use the Castella noise-adaptive algorithm of [5]. Other �ltering techniques include
particle �lters [6], or the Rao-Blackwell particle �lter [7], which is a re�ned particle �lter that requires less
particles.
However, targets are more maneuvering nowadays, and the linear target models are not e�cient enough with
the new generation of targets. In this paper we thus propose a target model expressed in intrinsic coordinates,
based on the 3D Frenet-Serret frame. Our target model is close to the ones of [8], [9] and [10]. A new Kalman-
based �ltering algorithm is derived to match speci�cally this model, as it is not expressed in a vectorial space
as usual. This �lter is called the Invariant Extended Kalman Filter (IEKF), see for example [11] or [12]. Some
speci�c properties of the IEKF will be highlighted, among which the fact that it is more robust than an EKF.
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The paper is organized as follows. In section 2 we derive the target model from the Frenet-Serret frame evolution.
In section 3, we detail the construction of an appropriate �lter, the IEKF of [13] adapted to the target tracking
problem. Finally, in section 4 we show the performances of the designed estimation method.

2 Target model in the Frenet-Serret frame

The idea is to express the target model in intrinsic coordinates, and to model the evolution by assuming the
target undergoes constant command motions (as the ones a pilot would apply on an aircraft for instance). The
commands are represented by piecewise constant parameters, as it is described below.

2.1 Derivation of the model equations

The target model is based on the Frenet-Serret frame. This is inspired by the model used in [14]. The three
vectors of the frame are called the tangential vector, Tt, the normal vector, Nt and the binormal vector, Bt.
Their evolution are known with respect to the tangential velocity ut, the curvature κt and the torsion τ̃t of the
curve, as described in (1). Then we let γt = utκt and τt = utτ̃t be the curvature and the torsion, with a slight
abuse of language. In the simulations of Section 4, we will plot κt and τ̃t, the usual de�nitions of the curvature
and the torsion.

dT

dt
= uκN,

dN

dt
= u(−κT + τ̃B),

dB

dt
= −uτ̃N (1)

The state of the target is then composed of the rotation matrix Rt =
(
Tt Rt Bt

)
, the cartesian position of

the target xt, the curvature of the trajectory γt, its torsion τt and the tangential velocity of the target ut. The
state is explicitly de�ned by (2). It does not belong to a vectorial space due to the presence of the rotation
matrix Rt.

Xt =
(
Rt xt γt τt ut

)
(2)

The evolution of this state can be derived from the Frenet-Serret equations, and from the choice of piecewise
constant commands. These commands are represented by the parameters γt, τt, ut. In equation (3), we have let
(a)× ∈ R3×3 denote the skew-symmetric matrix associated with the cross product with vector a ∈ R3. Let us

also call vt =
(
ut 0 0

)T
, and ωt =

(
τt 0 γt

)T
. Finally the noises are supposed to be white and gaussian,

and are denoted wωt , w
,
tw

γ
t , w

τ
t , w

u
t ; and they account for small changes over time, but also for the jumps in the

piecewise constant commands, as it will be explained in Section 4.

dxt
dt

= Rtvt + wxt ,
dRt
dt

= Rt(ωt + wωt )×,
dγt
dt

= 0 + wγt ,
dτt
dt

= 0 + wτt ,
dut
dt

= 0 + wut (3)

2.2 Particular form of the state

The state is in fact composed of two fairly di�erent parts. We can separate a matricial part and a vectorial part
in it. Indeed, the translation and rotation can be considered as an element of SE(3), and we call

χt =

(
Rt xt
01,3 1

)
The group SE(3) of rotations and translations in 3D is of dimension 6. The other part of the sate is composed
of the curvature, the torsion and the tangential velocity:

ζ =

γtτt
ut


Before going further, let us de�ne some basic operations on the Lie group SE(3). A matrix Lie Group is a set
of invertible matrices, stable by multiplication and inversion. A Lie group is di�erentiable. One can thus de�ne
a tangent space at the neutral element to the group, called a Lie algebra. A Lie algebra is a vectorial space,
equipped with an intern bilinear multiplication. SE(3) describes the possible motions of a point mass in the
3D space. It is de�ned as follows:

SE(3) =

{(
R x
01,3 1

)
, x ∈ R3, R ∈M3, RR

T = RTR = I3,det(R) = 1

}
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We can represent the associated Lie algebra as:

se(3) =




0 −c b α
c 0 −a β
−b a 0 γ
0 0 0 0

 ,

ab
c

 ∈ R3,

αβ
γ

 ∈ R3


We call (.)× the operator

(.)× : R3 →M3,

ab
c

�

 0 −c b
c 0 −a
−b a 0


It is then possible to write the evolution equations (3) in a slightly more compact way, as in (4) with ωt =(
τt 0 γt

)T
and vt =

(
ut 0 0

)T
. To do this, one must introduce the corresponding noises wχt =

(
(wRt )× wxt
01×3 0

)
,

and wζt = (wγt , w
τ
t , w

u
t ) and the matrix νt as follows:

νt =


0 −γt 0 ut
γt 0 −τt 0
0 τt 0 0
0 0 0 0


dχt
dt

= χt(νt + wχt ) =

(
R(ωt)× Rv
01×3 0

)
,
dζt
dt

= 0 + wζt (4)

The measurements are assumed to be in cartesian coordinates, and occur at times tn, n ∈ N, and are thus
expressed as (5), with Vn ∈ R3 a gaussian independant white noise.

Yn = xtn + Vn (5)

The classical Kalman �lters cannot be applied to this formulation of the target state. However, if we assume
that ζt, the vectorial part of the state is known, then χt follows a left-invariant di�erential equation. We thus
introduce the Invariant Extended Kalman Filter, as in [11], and extend it to the case where the velocity, the
curvature and the torsion are not known, as in [15] or [12].

3 Estimation algorithm

In this section, we derive the �lter's equations to perform the estimation.

3.1 Similarities with the Invariant theory

χt veri�es an equation of the type (6).
d

dt
χt = fit(χt) + χtwt (6)

where it = ζt ∈ R3 is a known input (we suppose ζt known for the moment)., wt is a continuous white gaussian
noise, and f satis�es the condition:

fi(ab) = afi(b) + fi(a)b− afi(Id)b (7)

forall (i, a, b) ∈ R3 × SE(3)× SE(3). An Invariant EKF can thus be designed to estimate χ.
In the case where the input ζt is not known, that is of interest in the target tracking problem, the algorithm
can be adapted to treat χ as a Lie group part, and ζ as a standard vectorial part.
The system satis�es thus (8). {

d
dtχt = fi(χt, ζt) + χtw

χ
t

d
dtζt = g(ζt) + wζt

(8)

where in our case

fζ :

(
R x
01,3 1

)
→
(
R(ω)× Rv
01,3 0

)
, g(ζ) = 03,1

We can also write the observations (5) with the help of the Lie group setting:

Yn = χtn

(
03,1
1

)
+

(
Vn
0

)
The condition (7) for f is easily veri�ed.
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3.2 Derivation of the algorithm

3.2.1 Error de�nition

The classical de�nition of the error for a vectorial state Xt, η = X̂t −Xt does not hold here. Indeed, if χ1 and
χ2 belong to the Lie group SE(3), there is no reason why χ1 − χ2 should also belong to this same Lie group.
We de�ne the error di�erently depending on which part of the state we are considering:

ηχt = χ−1
t χ̂t

ηζt = ζ̂t − ζt
More explicitly the global error ηt = (ηχt , η

ζ
t ) is de�ned as:

η =


ηRt
ηxt
ηγt
ητt
ηut

 =


RTt R̂t

RTt (x̂t − xt)
γ̂t − γt
τ̂t − τt
ût − ut

 (9)

3.2.2 Linearization of the error and propagation step

The propagation equations are:

d

dt
χ̂t = fωt,ut

(χ̂t) = χ̂tν̂t,
d

dt
ζ̂t = g(ζ̂t) = 0 (10)

Now let us assume once again (for the last time) that ζt is known. We can compute the error ηχt evolution.
This gives:

d

dt
ηχt = νtηt − ηtνt − ηtwχt

This equation has the particular property that it does not depend on the predicted state χ̂t at all. This is due
to the property (7) of the evolution.
As for our radar tracking application ζt is not known the evolution of ηχ is slightly modi�ed and it writes

d

dt
ηχt = ν̂tηt − ηtνt − ηtwχt (11)

indeed, the matrix νt depends on the vector ζt, so it has to be estimated as well. The evolution of ηζt is more
conventional:

d

dt
ηζt = 0 + wζt (12)

To linearize equations (11) and (12), see [11], we let ηRt ≈ I3 + (ξRt )×. This means that ξRt ∈ R3 is a small
instantaneous rotation vector. We also let ξxt = ηxt , ξ

γ
t = ηγt , ξ

τ
t = ητt and ξut = ηut . Then we mimic the EKF

methodology, and perform a �rst order linearization in the components of ξ, and we also neglect terms of order
‖ξ‖‖w‖. To do this, we use a property of Lie groups: (ξRt )×(ω̂t)× − (ω̂t)×(ξ

R
t )× = (ξRt × ω̂t)×. This allows to

identify the term d
dtξ

R
t using that (a)× = (b)× =⇒ a = b. We use the same denomination for ξ as for η:

ξt =


ξRt
ξxt
ξγt
ξτt
ξut

 ∈ R9

During the propagation step, the error evolves as:

d

dt
ξt = Atξt + wt

with

At =



0 −γ̂t 0 0 0 0 0 −1 0
γ̂t 0 −τ̂t 0 0 0 0 0 0
0 τ̂t 0 0 0 0 −1 0 0
0 0 0 0 −γ̂t 0 0 0 −1
0 0 −ût γ̂t 0 −τ̂t 0 0 0
0 ût 0 0 τ̂t 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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This permits tp write the covariance evolution during the propagation: the covariance matrix evolves with the
Riccati equation (13).

d

dt
Pt = AtPt + PtA

T
t +Qt (13)

3.2.3 Gain computation and update step

The update of the state writes:

χ̂+
tn = χ̂tn exp(Lχn(χ̂

−1
tn Yn)), ζ̂+tn = ζtn + Lζn(χ̂

−1
tn Yn) (14)

more explicitly, this can be developed as:
R̂+
tn

x̂+tn
γ̂+tn
τ̂+tn
û+tn

 =


R̂tn expm[(δω)×]

R̂tn x̂tn +B(δω)δx
γ̂tn + δγ
τ̂tn + δτ
ûtn + δu

 (15)

where
(
δω δx δγ δτ δu

)T
= Ln(R̂tn(Yn − x̂tn)), expm denotes the matrix exponential map inM3, and

B(δω) = I3 +
1− cos‖δω‖
‖δω‖2

(δω)× +
δω − sin‖δω‖
‖δω‖3

[(δω)×]
2

The gain matrix Ln ∈ R9×3 is computed with the Riccati equation (13), as will be explained in the following.
The innovation is de�ned as χ̂−1

tn Yn = R̂Ttn(Yn − x̂tn), it veri�es:

R̂Ttn(Yn − x̂tn) = R̂Ttn(xtn − x̂tn) +RTtnVn = −(ηRtn)
−1ηxtn + R̂TtnVn

thus, as ηxt = ξxt and (ξRt )×ξ
x
t is of order two, then the linearization gives R̂Tt (Yn− X̂tn) ≈ −Hξ+ R̂TtnVn, where

H ∈ R3×9 is de�ned as H =
(
03×3 I3 03×3

)
. We are now able to derive the update ξ+t of ξt from (15) and

(9), which gives:

ξ+tn = ξtn − Ln
[(
03×3 I3 03×3

)
ξtn − R̂TtnVn

]
(16)

Finally, the Kalman gain can be computed with the full Riccati equations, with Qt and Nn the process and
measurement noise covariance respectively:

d

dt
Pt = AtPt + PtA

T
t +Qt

Sn = HPtnH
T + R̂TtnNnR̂tn

Ln = PtnH
TS−1

P+
tn = (I9 − LnH)Ptn

3.2.4 Summary of the �lter's equations

To sum up the results obtained before, we can write extensively the �lter's equations.

1. Propagation step:

• Solve d
dt χ̂t = χ̂tν̂t and

d
dt ζ̂t = 0

• Solve the Riccati equation d
dtPt = AtPt + PtA

T
t +Qt

2. Update step:

• Compute the innovation zn = R̂tn(Yn − x̂tn)
• Compute the Kalman gain Ln = PtnH(HPtnH

T + R̂tnNR̂
T
tn) with H =

(
03,3 I3 03,3

)
• Update the state χ̂+

tn = χ̂tn exp((Lnzn)1:6 and ζ̂+tn = ζtn + (Lnzn)7:9

• Update the covariance P+
tn = (I9 − LnH)Ptn
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Figure 1 � Reference trajectory and trajectory with simulated noise

4 Results

The target model along with the �ltering algorithm can estimate some trajectories that do not stay in a plane,
and which require the use of the Interacting Multiple Model (IMM) if we use standard models such as constant
velocity, constant horizontal or vertical turns or based on the linear Singer model [1]. The type of trajectory
we want to track is shown on �gure 1, and the estimation by the IEKF on �gure 2.
The trajectory shown in �gure 1 has been elaborated in three parts. The �rst part is a straight line motion with
constant velocity, the second part is a helical motion, with di�erent, but constant tangential velocity, torsion
and curvature, and the last part is a circle in a plane, with again di�erent velocity and curvature (the torsion
is zero since we lie in a plane). Measurement noise is added by hand, independently on the three cartesian
position coordinates, the amplitude of the measurement noise is visible on the �gure on the right. It is quite
high, so that it is more challenging for the �ltering algorithm.
The estimations made by an IEKF of the position x, the curvature κ, the torsion τ̃ and the norm of the velocity
u are displayed in �gure 2. The parameters are poorly initialized on purpose to see the behaviour of the �lter
when confronted to high initial errors. In practice the position is relatively well known, as well as the norm of
the velocity, but the curvature or the torsion are not.
The results show that the position is very accurately estimated. The process noise tuning was done such that
the estimations were precise on constant motions during the trajectory (especially for the norm of the velocity
and the curvature). So for this tuning, the estimations have a small delay after the jumps, which can be reduced
by increasing the process noise on these parameters but at the cost of a lesser precision on the constant parts.
The process noise tuning has the same issues as for a classical Kalman �lter, where one must have a balance
between the precision during constant motions and the capacity to react rapidly to jumps.
The estimation of the torsion is more di�cult. Indeed, the torsion comes from a third derivative of the position,
so it is barely observable. In theory, it is observable, but in practice since we measure noisy position, it is hard
to recover. However, we see that its estimation eventually converge, and that it becomes better after the �rst
jump, when the trajectory is not a straight line anymore.
The lack of precision of the torsion estimation does not really a�ect the quality of the estimation of the other
parameters, and it is not in itself a major problem. Indeed, what is most relevant to assess the performances of
a �ltering algorithm is either the precision of the position, and the ability of the algorithm to �lter the noise,
or the precision of the velocity vector, to be sure where the target is actually heading, and at which speed. It
is very di�cult to tune a �lter to achieve both very e�ciently, but we can obtain a very good balance with the
IEKF. However, the torsion (and the curvature) are not as essential to the user. But we cannot suppress them
of the state as they bring some necessary degrees of freedom in the trajectory (the torsion is what allows to get
out of a plane).

5 Conclusions

In this paper we have presented a target model in 3D, and based on the Frenet-Serret frame. This particular
frame allows us to express the model in intrinsic coordinates, which can best represent the commands of a
pilot in his aircraft for instance. To perform estimation with this target model, we have seen that an Invariant
Extended Kalman Filter is most appropriate, because it is suited to the evolution of a part of the state, which
is not vectorial as it is usually the case.
Another advantage of the IEKF is to have more stability properties than an EKF. Indeed, we have seen that
the evolution of the error does not depend on the predicted position or rotation matrix of the target, contrary
to an EKF.
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Figure 2 � Estimation of the position (top left) and of parameters ut (top right), γt (bottom left), τt (bottom
right)

It is very hard to use this model with other �ltering algorithms, since they are all designed to match a vectorial
state model. The orthogonality constraints implied by the use of the Frenet-Serret frame are highly nonlinear,
and an EKF has di�culties with this type of formulations.
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